【題目】設數(shù)列{an}的前n項和為Sn , 且λSn=λ﹣an , 其中λ≠0且λ≠﹣1.
(1)證明:{an}是等比數(shù)列,并求其通項公式;
(2)若 ,求λ.

【答案】
(1)解:當n=1時,λa1=λ﹣a1,

∵λ≠0且λ≠﹣1,∴ ,

當n≥2時,λSn1=λ﹣an1,λSn=λ﹣an,

兩式相減得(1+λ)an=an1,因為λ≠﹣1,

,

因此{an}是首項為 ,公比為 的等比數(shù)列,


(2)解:由λSn=λ﹣an =

∴λ=1或λ=﹣3


【解析】(1)利用已知條件求出數(shù)列的首項以及數(shù)列相鄰兩項的關系,利用數(shù)列是等比數(shù)列,求出公比,然后求解通項公式.(2)利用數(shù)列的通項公式以及已知條件推出λ的關系式,求解即可.
【考點精析】解答此題的關鍵在于理解數(shù)列的通項公式的相關知識,掌握如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)= 為奇函數(shù),則a= , f(g(﹣2))=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,則f(f(3))= , f(x)的單調減區(qū)間是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C在直角坐標系xOy下的參數(shù)方程為 (θ為參數(shù)).以O為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程;
(2)直線l的極坐標方程是ρcos(θ﹣ )=3 ,射線OT:θ= (ρ>0)與曲線C交于A點,與直線l交于B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C在直角坐標系xOy下的參數(shù)方程為 (θ為參數(shù)).以O為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程;
(2)直線l的極坐標方程是ρcos(θ﹣ )=3 ,射線OT:θ= (ρ>0)與曲線C交于A點,與直線l交于B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,
(Ⅰ)若c2=5a2+ab,求 ;
(Ⅱ)求sinAsinB的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來共享單車在我國主要城市發(fā)展迅速.目前市場上有多種類型的共享單車,有關部門對其中三種共享單車方式(M方式、Y方式、F方式)進行統(tǒng)計(統(tǒng)計對象年齡在15~55歲),相關數(shù)據(jù)如表1,表2所示. 三種共享單車方式人群年齡比例(表1)

方式
年齡分組

M
方式

Y
方式

F
方式

[15,25)

25%

20%

35%

[25,35)

50%

55%

25%

[35,45)

20%

20%

20%

[45,55]

5%

a%

20%

不同性別選擇共享單車種類情況統(tǒng)計(表2)

性別
使用單車
種類數(shù)(種)

1

20%

50%

2

35%

40%

3

45%

10%

(Ⅰ)根據(jù)表1估算出使用Y共享單車方式人群的平均年齡;
(Ⅱ)若從統(tǒng)計對象中隨機選取男女各一人,試估計男性使用共享單車種類數(shù)大于女性使用共享單車種類數(shù)的概率;
(Ⅲ)現(xiàn)有一個年齡在25~35歲之間的共享單車用戶,那么他使用Y方式出行的概率最大,使用F方式出行的概率最小,試問此結論是否正確?(只需寫出結論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a為實常數(shù),y=f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=4x++3,則對于y=f(x)在x<0時,下列說法正確的是( 。
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(2x+1)定義域是[﹣1,0],則y=f(x+1)的定義域是( 。
A.[﹣1,1]
B.[0,2]
C.[﹣2,0]
D.[﹣2,2]

查看答案和解析>>

同步練習冊答案