【題目】在正項(xiàng)等差數(shù)列{an}中a1和a4是方程x2﹣10x+16=0的兩個(gè)根,若數(shù)列{log2an}的前5項(xiàng)和為S5且S5∈[n,n+1],n∈Z,則n=

【答案】11
【解析】解:∵在正項(xiàng)等差數(shù)列{an}中a1和a4是方程x2﹣10x+16=0的兩個(gè)根, ∴a1<a4 , 解方程得:a1=2,a4=8,d= =2,
∴an=2+(n﹣1)×2=2n,
∴l(xiāng)og2an=log2(2n)=1+log2n,
數(shù)列{log2an}的前5項(xiàng)和為S5且S5∈[n,n+1],n∈Z,
∴S5=5+log21+log22+log23+log24+log25=8+log215∈[11,12],
∴n=11.
所以答案是:11.
【考點(diǎn)精析】利用等差數(shù)列的前n項(xiàng)和公式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知前n項(xiàng)和公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn)A(3,2),B(﹣1,2),圓C以線段AB為直徑. (Ⅰ)求圓C的方程;
(Ⅱ)求過點(diǎn)M(3,1)的圓C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1=2an+1(n∈N*),Sn為其前n項(xiàng)和,則S5的值為(
A.57
B.61
C.62
D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程ax2+by2=ab和ax+by+c=0(其中ab≠0,a≠b,c>0,它們所表示的曲線可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= ,x∈(0, ]的最大值M,最小值為N,則M﹣N=(
A.
B. ﹣1
C.2
D. +1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,△PAD為等邊三角形, ,AB⊥AD,AB∥CD,點(diǎn)M是PC的中點(diǎn). (I)求證:MB∥平面PAD;
(II)求二面角P﹣BC﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cosωxsin(ωx﹣ )+ cos2ωx﹣ (ω>0,x∈R),且函數(shù)y=f(x)圖象的一個(gè)對(duì)稱中心到它對(duì)稱軸的最近距離為
(1)求ω的值及f(x)的對(duì)稱軸方程;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(A)=0,sinB= ,a= ,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1:y2=2px(p>0)與雙曲線C2 =1(a>0.b>0)有公共焦點(diǎn)F,且在第一象限的交點(diǎn)為P(3,2 ).
(1)求拋物線C1 , 雙曲線C2的方程;
(2)過點(diǎn)F且互相垂直的兩動(dòng)直線被拋物線C1截得的弦分別為AB,CD,弦AB、CD的中點(diǎn)分別為G、H,探究直線GH是否過定點(diǎn),若GH過定點(diǎn),求出定點(diǎn)坐標(biāo);若直線GH不過定點(diǎn),說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某客運(yùn)公司用A,B兩種型號(hào)的車輛承擔(dān)甲、乙兩地間的長(zhǎng)途客運(yùn)業(yè)務(wù),每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,在甲地和乙地之間往返一次的營(yíng)運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過21輛車的客運(yùn)車隊(duì),并要求B型車不多于A型車7輛.若每天要運(yùn)送不少于900人從甲地去乙地的旅客,并于當(dāng)天返回,為使公司從甲地去乙地的營(yíng)運(yùn)成本最小,那么應(yīng)配備A型車、B型車各多少輛?營(yíng)運(yùn)成本最小為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案