【題目】已知函數(shù)f(x)=cosωxsin(ωx﹣ )+ cos2ωx﹣ (ω>0,x∈R),且函數(shù)y=f(x)圖象的一個對稱中心到它對稱軸的最近距離為 .
(1)求ω的值及f(x)的對稱軸方程;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若f(A)=0,sinB= ,a= ,求b的值.
【答案】
(1)解:函數(shù)f(x)=cosωxsin(ωx﹣ )+ cos2ωx﹣ (ω>0,x∈R),
化簡可得:f(x)= sinωxcosωx﹣ cos2ωx+ cos2ωx﹣ (ω>0,x∈R),
= sin2ωx+ cos2ωx﹣ = sin2ωx+ cos2ωx= sin(2ωx )
∵函數(shù)y=f(x)圖象的一個對稱中心到它對稱軸的最近距離為 .
∴T=4× =π,
∴ ,
故得ω=1.
∴f(x)= sin(2x ),
對稱軸方程:2x = ,
得:x= ,k∈Z.
∴f(x)的對稱軸方程為:x= ,k∈Z.
(2)解:∵f(A)=0,即sin(2A )=0,
∴2A =kπ,
∵0<A<π,
∴A= ,
∵sinB= ,a= ,
由正弦定理, ,可得: ,解得:b= .
故得b的值為: .
【解析】(1)利用二倍角和兩角和與差以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,對稱中心到它對稱軸的最近距離為 ,可得周期T,從而求出ω.結(jié)合三角函數(shù)的圖象和性質(zhì),可得f(x)的對稱軸方程;(2)根據(jù)f(A)=0,求解出A角的大小,sinB= ,a= ,根據(jù)正弦定理可得b的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A、B分別為雙曲線 的左右頂點(diǎn),雙曲線的實軸長為4 ,焦點(diǎn)到漸近線的距離為 .
(1)求雙曲線的方程;
(2)已知直線 與雙曲線的右支交于M、N兩點(diǎn),且在雙曲線的右支上存在點(diǎn)D,使 ,求t的值及點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為0的等差數(shù)列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}通項公式;
(2)設(shè)數(shù)列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1= 的正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正項等差數(shù)列{an}中a1和a4是方程x2﹣10x+16=0的兩個根,若數(shù)列{log2an}的前5項和為S5且S5∈[n,n+1],n∈Z,則n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=log2(ax2﹣2x+2)的定義域為Q.
(1)若a>0且[2,3]∩Q=,求實數(shù)a的取值范圍;
(2)若[2,3]Q,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查某車間20名工人的年齡,第i名工人的年齡為ai,具體數(shù)據(jù)見表:
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
ai | 29 | 28 | 30 | 19 | 31 | 28 | 30 | 28 | 32 | 31 | 30 | 31 | 29 | 29 | 31 | 32 | 40 | 30 | 32 | 30 |
(1)作出這20名工人年齡的莖葉圖;
(2)求這20名工人年齡的眾數(shù)和極差;
(3)執(zhí)行如圖所示的算法流程圖(其中 是這20名工人年齡的平均數(shù)),求輸出的S值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)D為△ABC的邊BC上一點(diǎn), =3 ,En(n∈N+)為邊AC上的點(diǎn),滿足 = an+1 , =(4an+3) ,其中實數(shù)列{an}中an>0,a1=1,則{an}的通項公式為( )
A.32n﹣1﹣2
B.2n﹣1
C.4n﹣2
D.24n﹣1﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,(an﹣3)an+1﹣an+4=0(n∈N*).
(1)求a2 , a3 , a4;
(2)猜想{an}的通項公式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)站對“愛飛客”飛行大會的日關(guān)注量x(萬人)與日點(diǎn)贊量y(萬次)進(jìn)行了統(tǒng)計對比,得到表格如下:
x | 3 | 5 | 6 | 7 | 9 |
y | 2 | 3 | 3 | 4 | 5 |
由散點(diǎn)圖象知,可以用回歸直線方程 來近似刻畫它們之間的關(guān)系.
(Ⅰ)求出y關(guān)于x的回歸直線方程,并預(yù)測日關(guān)注量為10萬人時的日點(diǎn)贊量;
(Ⅱ)一個三口之家參加“愛飛客”親子游戲,游戲規(guī)定:三人依次從裝有3個白球和2個紅球的箱子中不放回地各摸出一個球,大人摸出每個紅球得獎金10元,小孩摸出1個紅球得獎金50元.求該三口之家所得獎金總額不低于50元的概率.
參考公式:b= ; 參考數(shù)據(jù): =200, =112.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com