函數(shù).
(1)求函數(shù)的極值;
(2)設函數(shù),對,都有,求實數(shù)m的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)= -ax(a∈R,e為自然對數(shù)的底數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,函數(shù)g(x)=(x-m)f(x)-+x2+x在區(qū)間(0,+)上為增函數(shù),求整數(shù)m 的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中a,b∈R
(1)當a=3,b=-1時,求函數(shù)f(x)的最小值;
(2)若曲線y=f(x)在點(e,f(e))處的切線方程為2x-3y-e=0(e=2.71828 為自然對數(shù)的底數(shù)),求a,b的值;
(3)當a>0,且a為常數(shù)時,若函數(shù)h(x)=x[f(x)+lnx]對任意的x1>x2≥4,總有成立,試用a表示出b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),函數(shù).
⑴當時,函數(shù)的圖象與函數(shù)的圖象有公共點,求實數(shù)的最大值;
⑵當時,試判斷函數(shù)的圖象與函數(shù)的圖象的公共點的個數(shù);
⑶函數(shù)的圖象能否恒在函數(shù)的上方?若能,求出的取值范圍;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
用白鐵皮做一個平底、圓錐形蓋的圓柱形糧囤,糧囤容積為(不含錐形蓋內(nèi)空間),蓋子的母線與底面圓半徑的夾角為,設糧囤的底面圓半徑為R,需用白鐵皮的面積記為(不計接頭等)。
(1)將表示為R的函數(shù);
(2)求的最小值及對應的糧囤的總高度。(含圓錐頂蓋)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù),已知曲線在點處的切線方程是.
(1)求的值;并求出函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com