已知公差不為零的等差數(shù)列{an},滿足a3=5且a1,a2,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=
1
anan+1
,求數(shù)列{bn}前n項的和為Tn
考點:數(shù)列的求和,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知條件利用等差數(shù)列的通項公式和等比數(shù)列性質(zhì)求出首項和公差,由此能求出an=
5
3
n

(Ⅱ)由bn=
1
5
3
n•
5
3
(n+1)
=
9
25
(
1
n
-
1
n+1
)
,利用裂項求和法能求出數(shù)列{bn}前n項的和為Tn
解答: 解:(Ⅰ)設公差為d,
∵公差不為零的等差數(shù)列{an},滿足a3=5且a1,a2,a4成等比數(shù)列.
a1+2d=5
(a1+d)2=a1(a1+3d)
a1≠0
,
解得:a1=
5
3
,d=
5
3
,得an=
5
3
n
(n∈N*
(Ⅱ)由題意an=
5
3
n
,
bn=
1
5
3
n•
5
3
(n+1)
=
9
25
(
1
n
-
1
n+1
)
,
∴Tn=
9
25
[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]

=
9
25
(1-
1
n+1
)

=
9n
25(n+1)
點評:本題考查數(shù)列的通項公式和前n項和的求法,解題時要認真審題,注意裂項求和法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A(-
1
2
,0),B是圓F:(x-
1
2
2+y2=36(F為圓心)上一動點,線段AB的垂直平分線交BF于P,則動點P的軌跡方程為( 。
A、
x2
9
-
4y2
35
=1
B、
x2
9
+
4y2
35
=1
C、
4x2
35
-
y2
9
=1
D、
4x2
35
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F是橢圓
x2
4
+y2=1的一個焦點,則橢圓上與點F的距離等于長半軸長點的坐標是( 。
A、(0,±2)
B、(0,±1)
C、(
3
,±
1
2
D、(0,±
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:
sin215°+sin275°+sin2135°=
3
2
,
sin230°+sin290°+sin2150°=
3
2
,
sin245°+sin2105°+sin2165°=
3
2
,
通過觀察上述三個等式的規(guī)律,請你寫出一般性的命題,并對該命題進行證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+xlnx,且圖象在點(
1
e
,f(
1
e
))處的切線斜率為1(e為自然對數(shù)的底數(shù)).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)設g(x)=
f(x)-x
x-1
,求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項等比數(shù)列{an}是遞增數(shù)列,且滿足a1+a5=246,a2a4=729.
(1)求數(shù)列{an}的通項公式;
(2)設bn=an•log3an+1(n∈N*),數(shù)列{bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設的△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知a=1,b=2,cosC=
1
4

(1)求c的值;
(2)求cos(A-C)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知矩陣A=
ak
01
(k≠0)的一個特征向量為
a
=
k
-1
,矩陣A的逆矩陣A-1對應的變換將點(3,1)變?yōu)辄c(1,1).
(1)求實數(shù)a,k的值;
(2)求直線x+2y+1=0在矩陣A的對應變換下得到的圖形方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一副撲克,去掉大小王,現(xiàn)從中隨機抽取一張撲克牌.求
(1)抽取的一張是紅桃的概率?
(2)抽取的黑色的概率?
(3)抽取的方塊或梅花的概率?

查看答案和解析>>

同步練習冊答案