【題目】“微信”和“QQ”是騰訊社交體系中的兩款產(chǎn)品,小明為了解不同群體對(duì)這兩款產(chǎn)品的首選情況,統(tǒng)計(jì)了周圍老師和同學(xué)關(guān)于首選“微信”或“QQ”的比例,得到如圖等高條形圖.根據(jù)等高條形圖中的信息,可判斷下列說法正確的是( )
A.對(duì)老師而言,更傾向于首選“微信”
B.對(duì)學(xué)生而言,更傾向于首選“QQ”
C.首選“微信”的老師比首選“微信”的同學(xué)多
D.如果首選“微信”的老師比首選“微信”的同學(xué)多,則小明統(tǒng)計(jì)的老師人數(shù)一定比學(xué)生多
【答案】A
【解析】
先識(shí)圖再結(jié)合圖象進(jìn)行簡單的合情推理逐一檢驗(yàn)即可得解.
解:A對(duì)老師群體而言,首選“微信”與首選“QQ”的比例為:,故對(duì)老師而言,更傾向于首選“微信”,即A正確,
B對(duì)學(xué)生群體而言,首選“微信”與首選“QQ”的比例為:,故對(duì)學(xué)生而言,更傾向于首選“微信”,即B錯(cuò)誤,
C由于老師群體與學(xué)生群體人數(shù)不定,即首選“微信”的老師比首選“微信”的同學(xué)無法比較,即C錯(cuò)誤,
D設(shè)老師群體人,學(xué)生群體人,則有,即,則小明統(tǒng)計(jì)的老師人數(shù)不一定比學(xué)生多,即D錯(cuò)誤,
綜上所述得:A正確.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且.
(Ⅰ) 若1是關(guān)于x的方程的一個(gè)解,求t的值;
(Ⅱ) 當(dāng)且時(shí),解不等式;
(Ⅲ)若函數(shù)在區(qū)間(-1,2]上有零點(diǎn),求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD⊥平面ABCD,,∠BAD=∠CDA=90°,.
(1)求證:平面PAD⊥平面PBC;
(2)求直線PB與平面PAD所成的角;
(3)在棱PC上是否存在一點(diǎn)E使得直線平面PAD,若存在求PE的長,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),曲線在點(diǎn)處的切線方程為.
(1)求實(shí)數(shù)的值,并求的單調(diào)區(qū)間;
(2)試比較與的大小,并說明理由;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,拋物線的動(dòng)弦過點(diǎn),過點(diǎn)且垂直于弦的直線交拋物線的準(zhǔn)線于點(diǎn).
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,算得,,,.
(1)求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程;
(2)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲(chǔ)蓄.
(附:線性回歸方程中,,其中,為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著緩緩爬行的烏龜,驕傲起來,睡了一覺.當(dāng)它醒來時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到了終點(diǎn).用和分別表示烏龜和兔子經(jīng)過時(shí)間t所行的路程,則下列圖象中與故事情節(jié)相吻合的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中“勾股容方”問題:“今有勾五步,股十二步,問勾中容方幾何?”魏晉時(shí)期數(shù)學(xué)家劉徽在其《九章算術(shù)注》中利用出入相補(bǔ)原理給出了這個(gè)問題的一般解法:如圖1,用對(duì)角線將長和寬分別為和的矩形分成兩個(gè)直角三角形,每個(gè)直角三角形再分成一個(gè)內(nèi)接正方形(黃)和兩個(gè)小直角三角形(朱、青).將三種顏色的圖形進(jìn)行重組,得到如圖2所示的矩形.該矩形長為,寬為內(nèi)接正方形的邊長.由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設(shè)為斜邊的中點(diǎn),作直角三角形的內(nèi)接正方形對(duì)角線,過點(diǎn)作于點(diǎn),則下列推理正確的是( )
①由圖1和圖2面積相等得;
②由可得;
③由可得;
④由可得.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com