【題目】已知橢圓的左、右焦點(diǎn)分別為,直線)與橢圓交于,兩點(diǎn)(點(diǎn)軸的上方).

1)若,求的面積;

2)是否存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,請說明理由.

【答案】(1)(2)存在實(shí)數(shù),使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)

【解析】

1)由橢圓方程求得,得,由直線方程與橢圓方程聯(lián)立可解得交點(diǎn)坐標(biāo),當(dāng)然這里只要得出點(diǎn)的縱坐標(biāo),即可求得三角形面積;

2)這類問題,都是假設(shè)存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn),則有.設(shè),從而有,把直線方程與橢圓方程聯(lián)立消元后可得,代入,求得值,說明存在,求不出值說明假設(shè)錯(cuò)誤,不存在。

1)設(shè)橢圓的半焦距為,因?yàn)?/span>,,,所以,,,

聯(lián)立化簡得,解得,又點(diǎn)軸的上方,所以,所以

所以的面積為.

2)假設(shè)存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn),則有.

設(shè),

聯(lián)立消去,(*

,.

,所以,即,

整理得,

所以,解得.

經(jīng)檢驗(yàn)時(shí)(*)中

所以存在實(shí)數(shù),使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足:

(1)證明:是等比數(shù)列,并求數(shù)列的通項(xiàng)公式.

(2)設(shè),若數(shù)列是等差數(shù)列,求實(shí)數(shù)的值;

(3)在(2)的條件下,設(shè) 記數(shù)列的前項(xiàng)和為,若對任意的存在實(shí)數(shù),使得,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對本企業(yè)900名員工的工作滿意程度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(16名女工,14名男工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根據(jù)以上數(shù)據(jù),估計(jì)該企業(yè)得分大于45分的員工人數(shù);

(2)現(xiàn)用計(jì)算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平局得分為 “滿意”,否則為 “不滿意”,請完成下列表格:

“滿意”的人數(shù)

“不滿意”的人數(shù)

合計(jì)

女員工

16

男員工

14

合計(jì)

30

(3)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿意”有關(guān)?

參考數(shù)據(jù):

P(K2K)

0.10

0.050

0.025

0.010

0.001

K

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子里裝有大小均勻的6個(gè)小球,其中有紅色球4個(gè),編號(hào)分別為1,2,3,4;白色球2個(gè),編號(hào)分別為4,5,從盒子中任取3個(gè)小球(假設(shè)取到任何個(gè)小球的可能性相同).

1)求取出的3個(gè)小球中,含有編號(hào)為4的小球的概率;

2)在取出的3個(gè)小球中,小球編號(hào)的最大值設(shè)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的最小正周期及單調(diào)增區(qū)間;

2)當(dāng)時(shí),求函數(shù)的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】IT從業(yè)者繪制了他在26歲~35(2009年~2018)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:

1)由散點(diǎn)圖知,可用回歸模型擬合的關(guān)系,試根據(jù)附注提供的有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程

2)若把月收入不低于2萬元稱為“高收入者”.

試?yán)茫?/span>1)的結(jié)果,估計(jì)他36歲時(shí)能否稱為“高收入者”?能否有95%的把握認(rèn)為年齡與收入有關(guān)系?

附注:①.參考數(shù)據(jù):,,,,,,其中,取

.參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為:,

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的焦點(diǎn)是,是曲線上不同兩點(diǎn),且存在實(shí)數(shù)使得,曲線在點(diǎn)處的兩條切線相交于點(diǎn)

1)求點(diǎn)的軌跡方程;

2)點(diǎn)軸上,以為直徑的圓與的另一交點(diǎn)恰好是的中點(diǎn),當(dāng)時(shí),求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),證明:對任意的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將三棱錐拼接得到如圖所示的多面體,其中,,,分別為,,,的中點(diǎn),.

1)當(dāng)點(diǎn)在直線上時(shí),證明:平面;

2)若均為面積為的等邊三角形,求該多面體體積的最大值.

查看答案和解析>>

同步練習(xí)冊答案