【題目】已知某中學高三文科班學生共有800人參加了數(shù)學與地理的水平測試,學校決定利用隨機數(shù)表法從中抽取100人進行成績抽樣調(diào)查,先將800人按001,002,,800進行編號.

1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;

(下面摘取了第7行到第9行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

2)抽取的100人的數(shù)學與地理的水平測試成績?nèi)缦卤恚?/span>

成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學成績,例如:表中數(shù)學成績?yōu)榱己玫墓灿?/span>20+18+4=42

人數(shù)

數(shù)學

優(yōu)秀

良好

及格


地理

優(yōu)秀

7

20

5

良好

9

18

6

及格

a

4

b

若在該樣本中,數(shù)學成績優(yōu)秀率是30%,求a,b的值:

在地理成績及格的學生中,已知求數(shù)學成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

【答案】1,;(2;

【解析】

試題分析:(1)從第8行第7列的數(shù)開始向右讀,最先檢查的編號為:785,916,955,667,199,…去除大于800的編號,可得最先檢查的3個人的編號;(2)①根據(jù)數(shù)學成績優(yōu)秀率是,構造關于的方程,解方程可得值,進而根據(jù)抽取樣本容量為100,可得值;②求出滿足,的基本事件總數(shù)及滿足數(shù)學成績優(yōu)秀的人數(shù)比及格的人數(shù)少的基本事件個數(shù),代入古典概型概率計算公式,可得答案.

試題解析:(1)785,667,199.

(2)①,∴;.

.

因為,,所以的搭配:

,,,,,,,,,,,,共有14種.

時,數(shù)學成績優(yōu)秀的人數(shù)比及格的人數(shù)少為事件,.

事件包括:,共2個基本事件;

,數(shù)學成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知首項為 的等比數(shù)列{an}不是遞減數(shù)列,其前n項和為Sn(n∈N*),且S3+a3 , S5+a5 , S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設 ,求數(shù)列{Tn}的最大項的值與最小項的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點為M,

(1)求過點M且到點P(0,4)的距離為2的直線l的方程;

(2)求過點M且與直線l3:x+3y+1=0平行的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把數(shù)列的各項按順序排列成如下的三角形狀,記表示第行的第個數(shù),例如,若,則=( )

A. 6 B. 7 C. 8 D. 15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知雙曲線C1 ,曲線C2:|y|=|x|+1,P是平面內(nèi)一點,若存在過點P的直線與C1 , C2都有公共點,則稱P為“C1﹣C2型點”

(1)在正確證明C1的左焦點是“C1﹣C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1﹣C2型點”;
(3)求證:圓x2+y2= 內(nèi)的點都不是“C1﹣C2型點”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=4x 的焦點為F.
(1)點A,P滿足 .當點A在拋物線C上運動時,求動點P的軌跡方程;
(2)在x軸上是否存在點Q,使得點Q關于直線y=2x的對稱點在拋物線C上?如果存在,求所有滿足條件的點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一個口袋有個白球,個黑球,這些球除顏色外全部相同,現(xiàn)將口袋中的球隨機逐個取出,并依次放入編號為,,的抽屜內(nèi).

(1)求編號為的抽屜內(nèi)放黑球的概率;

(2)口袋中的球放入抽屜后,隨機取出兩個抽屜中的球,求取出的兩個球是一黑一白的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點A(4,0),且在y軸上截得的弦MN的長為8.
(1)求動圓圓心的軌跡C的方程;
(2)已知點B(﹣1,0),設不垂直于x軸的直線與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).

(1)分別計算按這兩種方案所建的倉庫的體積;

(2)分別計算按這兩種方案所建的倉庫的表面積;

(3)哪個方案更經(jīng)濟些?

查看答案和解析>>

同步練習冊答案