【題目】已知函數(shù)

(Ⅰ)求函數(shù)上的最小值;

(Ⅱ)設(shè)函數(shù),若函數(shù)的零點有且只有一個,求實數(shù)的值.

【答案】(1)見解析(2)3

【解析】試題分析:(Ⅰ)先求取函數(shù)的導數(shù),討論的范圍, 得增區(qū)間, 得減區(qū)間,進而可得最小值;(Ⅱ) 上有且只有一個根,即上有且只有一個根, 令, 上單調(diào)遞減,在上單調(diào)遞增,只需即可.

試題解析:

(Ⅰ)令,得

①當時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增,此時函數(shù)在區(qū)間上的最小值為

②當時,函數(shù)在區(qū)間上單調(diào)遞增,此時函數(shù)在區(qū)間上的最小值為

(Ⅱ)由題意得, 上有且只有一個根,即上有且只有一個根,

,則

上單調(diào)遞減,在上單調(diào)遞增,所以

由題意可知,若使的圖象恰有一個公共點,則

綜上:若函數(shù)的零點有且只有一個,則實數(shù)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】有些家用電器(如冰箱等)使用了氟化物,氟化物的釋放破壞了大氣上層的臭氧層,使臭氧含量呈指數(shù)型函數(shù)變化,在氟化物排放量維持某種水平時,具有關(guān)系式Q=Q0e-0.0025t,其中Q0是臭氧的初始量.

(1)隨著時間t的增加,臭氧的含量是增加的還是減少的?

(2)試估計多少年以后將會有一半的臭氧消失?(參考數(shù)據(jù):ln 0.5=-0.69)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某校高二年級學生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

1)求出表中,及圖中的值;

2)若該校高二學生有人,試估計該校高二學生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù);

3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于次的學生中任選人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ū硎鞠铝屑,并判斷是有限集,還是無限集?

(1)方程(x+1) (x2-2)(x2+1)=0的有理根組成的集合A

(2)3除余1的自然數(shù)組成的集合;

(3)坐標平面內(nèi),不在第一,三象限的點的集合;

(4)自然數(shù)的平方組成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天氣預(yù)報是氣象專家根據(jù)預(yù)測的氣象資料和專家們的實際經(jīng)驗,經(jīng)過分析推斷得到的,在現(xiàn)實的生產(chǎn)生活中有著重要的意義,某快餐企業(yè)的營銷部門對數(shù)據(jù)分析發(fā)現(xiàn),企業(yè)經(jīng)營情況與降雨填上和降雨量的大小有關(guān).

(1)天氣預(yù)報所,在今后的三天中,每一天降雨的概率為40%,該營銷部分通過設(shè)計模擬實驗的方法研究三天中恰有兩天降雨的概率,利用計算機產(chǎn)生0大9之間取整數(shù)值的隨機數(shù),并用表示下雨,其余個數(shù)字表示不下雨,產(chǎn)生了20組隨機數(shù):

求由隨機模擬的方法得到的概率值;

(2)經(jīng)過數(shù)據(jù)分析,一天內(nèi)降雨量的大小(單位:毫米)與其出售的快餐份數(shù)成線性相關(guān)關(guān)系,該營銷部門統(tǒng)計了降雨量與出售的快餐份數(shù)的數(shù)據(jù)如下:

試建立關(guān)于的回歸方程,為盡量滿足顧客要求又不在造成過多浪費,預(yù)測降雨量為6毫米時需要準備的快餐份數(shù).(結(jié)果四舍五入保留整數(shù))

附注:回歸方程中斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,求函數(shù)的極值和單調(diào)區(qū)間;

(2)若在區(qū)間上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,對任意實數(shù),都有.

(1)若, ,且,求, 的值;

(2)若為常數(shù),函數(shù)是奇函數(shù),

驗證函數(shù)滿足題中的條件;

若函數(shù)求函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過點的直線交拋物線于兩點,坐標原點為,且12.

(Ⅰ)求拋物線的方程;

(Ⅱ)當以為直徑的圓的面積為時,求的面積的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為響應(yīng)市政府“綠色出行”的號召,王老師每個工作日上下班由自駕車改為選擇乘坐地鐵或騎共享單車這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車的概率是0.6.乘坐地鐵單程所需的費用是3元,騎共享單車單程所需的費用是1元.記王老師在一個工作日內(nèi)上下班所花費的總交通費用為X元,假設(shè)王老師上下班選擇出行方式是相互獨立的.

(I)求X的分布列和數(shù)學期望;

(II)已知王老師在2017年6月的所有工作日(按22個工作日計)中共花費交通費用110元,請判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說明理由.

原則:設(shè)表示王老師某月每個工作日出行的平均費用,若,則有95%的把握認為王老師該月的出行規(guī)律與前幾個月的出行規(guī)律相比有明顯變化.(注:

查看答案和解析>>

同步練習冊答案