在△ABC中,若
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)在上述△ABC中,若角C的對邊,求該三角形內(nèi)切圓半徑的取值范圍。

(Ⅰ)直角三角形;(Ⅱ)

解析試題分析:(Ⅰ)先利用正弦定理和余弦定理把條件中關(guān)于角的等式轉(zhuǎn)化為關(guān)于邊的等式,再整理化簡,通過最終的等式可以判斷三角形的形狀.
(Ⅱ)利用(Ⅰ)的結(jié)果和切線的性質(zhì)把內(nèi)切圓的半徑用三角形的三條邊表示出來,再把三角邊轉(zhuǎn)化為角的形式,從而把問題轉(zhuǎn)化求三角函數(shù)的值域問題.
試題分析:(Ⅰ)根據(jù)正弦定理,原式可化為:,
再由余弦定理,上式可化為: ,
 
消去整理得:,所以 即△ABC為直角三角形.
(Ⅱ)如圖,中,,的內(nèi)切圓分別與邊相切與點

由切線長定理知: 
 
 四邊形中, 
四邊形為正方形, 
的半徑 
若設(shè)內(nèi)切圓半徑為,則 .
,

 
 
考點:1.正弦定理和余弦定理的應(yīng)用;2.直角三角形內(nèi)切圓的性質(zhì);3.三角恒等變換;4.三角函數(shù)的值域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中,內(nèi)角的對邊的邊長為,且
(1)求角的大;
(2)若,求出的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,(,且為常數(shù)),設(shè)函數(shù),若的最大值為1.
(1)求的值,并求的單調(diào)遞增區(qū)間;
(2)在中,角、、的對邊、,若,且,試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,內(nèi)角的對邊分別為,并且.
(1)求角的大;
(2)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的對邊,
(1)求;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求函數(shù)的最小值和最大值
(2)設(shè)三角形角的對邊分別為,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角所對的邊分別是,已知.
(Ⅰ)求;
(Ⅱ)若,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)的內(nèi)角、、的對邊分別為、、,且滿足
(1)求角的大。
(2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案