【題目】已知函數(shù) .
(1)判斷并證明函數(shù)f(x)的奇偶性
(2)判斷并證明當(dāng)x∈(﹣1,1)時函數(shù)f(x)的單調(diào)性;
(3)在(2)成立的條件下,解不等式f(2x﹣1)+f(x)<0.
【答案】
(1)解:∵y=x2+1為偶函數(shù),y=x為奇函數(shù)
根據(jù)函數(shù)奇偶性的性質(zhì),我們易得
函數(shù) 為奇函數(shù)
(2)解:當(dāng)x∈(﹣1,1)時
∵函數(shù)
f'(x)= >0恒成立
故f(x)在區(qū)間(﹣1,1)上為單調(diào)增函數(shù)
(3)解:在(2)成立的條件下,不等式f(2x﹣1)+f(x)<0可化為:
解得:
∴不等式的解集為
【解析】(1)由于函數(shù)的定義域?yàn)镽,關(guān)于原點(diǎn)對稱,故我們可利用函數(shù)奇偶性的性質(zhì)判斷方法來解答問題;(2)由函數(shù)f(x)的解析式,我們易求出原函數(shù)的導(dǎo)函數(shù)的解析式,結(jié)合x∈(﹣1,1),確定導(dǎo)函數(shù)的符號,即可判斷函數(shù)的單調(diào)性;(3)結(jié)合(1)、(2)的結(jié)論,我們可將原不等式轉(zhuǎn)化為一個關(guān)于x的不等式組,解不等式組即可得到答案.
【考點(diǎn)精析】掌握函數(shù)單調(diào)性的判斷方法和函數(shù)單調(diào)性的性質(zhì)是解答本題的根本,需要知道單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,A={x|2x2﹣x=0},B={x|mx2﹣mx﹣1=0},其中x∈R,如果(UA)∩B=,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=kx,g(x)= .
(1)求函數(shù)g(x)= 的單調(diào)區(qū)間;
(2)若不等式f(x)≥g(x)在區(qū)間(0,+∞)上恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,拋物線的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩個點(diǎn),其坐標(biāo)分別是, , , .
(1)求, 的標(biāo)準(zhǔn)方程;
(2)是否存在直線滿足條件:①過的焦點(diǎn);②與交于不同的兩點(diǎn)且滿足?若存在,求出直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),下列結(jié)論中不正確的是( )
A. 的圖象關(guān)于點(diǎn)中心對稱
B. 的圖象關(guān)于直線對稱
C. 的最大值為
D. 既是奇函數(shù),又是周期函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x>1},集合B={x|m≤x≤m+3};
(1)當(dāng)m=﹣1時,求A∩B,A∪B;
(2)若BA,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= (x2﹣9)的單調(diào)遞增區(qū)間為( )
A.(0,+∞)
B.(﹣∞,0)
C.(3,+∞)
D.(﹣∞,﹣3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1棱長為1,P、Q分別是線段AD1和BD上的點(diǎn),且D1P:PA=DQ:QB=5:12,
(1)求線段PQ的長度;
(2)求證PQ⊥AD;
(3)求證:PQ∥平面CDD1C1 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com