【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從甲、乙兩地區(qū)分別隨機調(diào)查了100個用戶,根據(jù)用戶對產(chǎn)品的滿意度評分,分別得到甲地區(qū)和乙地區(qū)用戶滿意度評分的頻率分布直方圖.
若甲地區(qū)和乙地區(qū)用戶滿意度評分的中位數(shù)分別為m1,m2;平均數(shù)分別為s1,s2,則下面正確的是( 。
A. m1>m2,s1>s2B. m1>m2,s1<s2
C. m1<m2,s1<s2D. m1<m2,s1>s2
【答案】C
【解析】
利用頻率分布直方圖分別求出甲地區(qū)和乙地區(qū)用戶滿意度評分的中位數(shù)和平均數(shù),由此能求出結(jié)果.
由頻率分布直方圖得:
甲地區(qū)[40,60)的頻率為:(0.015+0.020)×10=0.35,[60,70)的頻率為0.025×10=0.25,
∴甲地區(qū)用戶滿意度評分的中位數(shù)m1=6066,
甲地區(qū)的平均數(shù)s1=45×0.015×10+55×0.020×10+65×0.025×10+75×0.020×10+85×0.010×10+95×0.010×10=67.
乙地區(qū)[50,70)的頻率為:(0.005+0.020)×10=0.25,[70,80)的頻率為:0.035×10=0.35,
∴乙地區(qū)用戶滿意度評分的中位數(shù)m2=7010≈77.1,
乙地區(qū)的平均數(shù)s2=55×0.005×10+65×0.020×10+75×0.035×10+85×0.025×10+95×0.015×10=77.5.
∴m1<m2,s1<s2.
故答案為:C.
科目:高中數(shù)學 來源: 題型:
【題目】“一本書,一碗面,一條河,一座橋”曾是蘭州的城市名片,而現(xiàn)在“蘭州馬拉松”又成為了蘭州的另一張名片,隨著全民運動健康意識的提高,馬拉松運動不僅在蘭州,而且在全國各大城市逐漸興起,參與馬拉松訓練與比賽的人口逐年增加.為此,某市對人們參加馬拉松運動的情況進行了統(tǒng)計調(diào)查.其中一項調(diào)查是調(diào)查人員從參與馬拉松運動的人中隨機抽取200人,對其每周參與馬拉松長跑訓練的天數(shù)進行統(tǒng)計,得到以下統(tǒng)計表:
平均每周進行長跑訓練天數(shù) | 不大于2天 | 3天或4天 | 不少于5天 |
人數(shù) | 30 | 130 | 40 |
若某人平均每周進行長跑訓練天數(shù)不少于5天,則稱其為“熱烈參與者”,否則稱為“非熱烈參與者”.
(1)經(jīng)調(diào)查,該市約有2萬人參與馬拉松運動,試估計其中“熱烈參與者”的人數(shù);
(2)根據(jù)上表的數(shù)據(jù),填寫下列2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“熱烈參與馬拉松”與性別有關(guān)?
熱烈參與者 | 非熱烈參與者 | 合計 | |
男 | 140 | ||
女 | 55 | ||
合計 |
附:k2=(n為樣本容量)
P(k2≥k0) | 0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某種細菌的適宜生長溫度為10℃~25℃,為了研究該種細菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:
溫度/℃ | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
繁殖數(shù)量/個 | 20 | 25 | 33 | 27 | 51 | 112 | 194 |
對數(shù)據(jù)進行初步處理后,得到了一些統(tǒng)計量的值,如下表所示:
18 | 66 | 3.8 | 112 | 4.3 | 1428 | 20.5 |
其中,.
(1)請繪出關(guān)于的散點圖,并根據(jù)散點圖判斷與哪一個更適合作為該種細菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);
(3)當溫度為25℃時,該種細菌的繁殖數(shù)量的預(yù)報值為多少?
參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計分別為,.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓,拋物線的頂點為,準線的方程為,為拋物線上的動點,過點作圓的兩條切線與軸交于.
(Ⅰ)求拋物線的方程;
(Ⅱ)若,求△面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的四個頂點組成的四邊形的面積為,且經(jīng)過點.
(1)求橢圓的方程;
(2)若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于兩點,與交于點,四邊形和的面積分別為.求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,分別為雙曲線的左、右焦點,點P是以為直徑的圓與C在第一象限內(nèi)的交點,若線段的中點Q在C的漸近線上,則C的兩條漸近線方程為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個說法,其中正確的是( )
A.命題“若,則”的否命題是“若,則”
B.“”是“雙曲線的離心率大于”的充要條件
C.命題“,”的否定是“,”
D.命題“在中,若,則是銳角三角形”的逆否命題是假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)設(shè)曲線和交于,兩點,點,若,,成等比數(shù)列,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com