【題目】已知下列四個(gè)命題:

①等差數(shù)列一定是單調(diào)數(shù)列;

②等差數(shù)列的前項(xiàng)和構(gòu)成的數(shù)列一定不是單調(diào)數(shù)列;

③已知等比數(shù)列的公比為,若,則數(shù)列是單調(diào)遞增數(shù)列.

④記等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的最大值一定在處達(dá)到.

其中正確的命題有_____.(填寫所有正確的命題的序號)

【答案】

【解析】

舉反例,d0時(shí)為常數(shù)列,即可判斷出結(jié)論;舉反例:Snn22n,為單調(diào)遞增數(shù)列;舉反例:例如﹣1,﹣2,﹣4,……,為單調(diào)遞減數(shù)列.記等差數(shù)列的前n項(xiàng)和為Sn,由S2kkak+ak+1)>0,S2k+1=(2k+1ak+10,可得:ak0,ak+10,即可判斷出正誤.

①等差數(shù)列不一定是單調(diào)數(shù)列,例如時(shí)為常數(shù)列;

②等差數(shù)列的前項(xiàng)和構(gòu)成的數(shù)列一定不是單調(diào)數(shù)列,不正確,反例:,為單調(diào)遞增數(shù)列;

③已知等比數(shù)列的公比為,若,則數(shù)列是單調(diào)遞增數(shù)列,不正確,例如-1,-2,-4,……,為單調(diào)遞減數(shù)列.

④記等差數(shù)列的前項(xiàng)和為

,,

可得:,,可得數(shù)列的最大值一定在處達(dá)到.正確.

故答案為:④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個(gè)銷售季度內(nèi),沒售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個(gè)銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個(gè)銷售季度籌備了130噸該商品,現(xiàn)以(單位:噸,)表示下一個(gè)銷售季度的市場需求量,(單位:萬元)表示該電商下一個(gè)銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.

(Ⅰ)視分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,求;

Ⅱ)將表示為的函數(shù),求出該函數(shù)表達(dá)式;

Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區(qū)間中點(diǎn)值(組中值代表該組的各個(gè)值,并以市場需求量落入該區(qū)間的頻率作為市場需求量取該組中值的概率(例如則取的概率等于市場需求量落入的頻率),的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個(gè)頂點(diǎn)到平面的距離分別是3,3,6,則其重心到平面的距離為__________.(寫出所有可能值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60/盒、65/盒、80/盒、90/盒.為增加銷量,李明對這四種水果進(jìn)行促銷:一次購買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%

①當(dāng)x=10時(shí),顧客一次購買草莓和西瓜各1盒,需要支付__________元;

②在促銷活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓F和拋物線,過F的直線與拋物線和圓依次交于A、B、C、D四點(diǎn),求的值是( )

A.1B.2C.3D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求函數(shù)的極值.

(2)證明:有且僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是互不相同的空間直線,是不重合的平面,則下列命題中為真命題的是( )

A. ,則 B. ,則

C. ,則 D. ,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,,其前項(xiàng)和滿足,其中.

(1)設(shè),證明:數(shù)列是等差數(shù)列;

(2)設(shè),為數(shù)列的前項(xiàng)和,求證:

(3)設(shè)為非零整數(shù),),試確定的值,使得對任意,都有成立.

查看答案和解析>>

同步練習(xí)冊答案