已知二次函數(shù)y=x2+2ax在區(qū)間[4,+∞)上是增函數(shù),則實(shí)數(shù)a的范圍是
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)的單調(diào)性與開口方向和對(duì)稱軸有關(guān),先求出函數(shù)的對(duì)稱軸,然后結(jié)合開口方向可知[4,+∞)是[-a,+∞)的子集即可.
解答: 解:二次函數(shù)y=x2+2ax是開口向上的二次函數(shù)
對(duì)稱軸為x=-a,
∴二次函數(shù)y=x2+2ax在[-a,+∞)上是增函數(shù)
∵在區(qū)間[4,+∞)上是增函數(shù),
∴-a≤4
即a≥-4
故實(shí)數(shù)a的范圍是[-4,+∞)
故答案為:[-4,+∞)
點(diǎn)評(píng):本題主要考查了二次函數(shù)的單調(diào)性,二次函數(shù)是高考中的熱點(diǎn)問題,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)F(-c,0)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),直線l:x=-
a2
c
與x軸交于P點(diǎn),MN為橢圓的長(zhǎng)軸,已知|MN|=8,且|PM|=2|MF|.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P的直線m與橢圓相交于不同的兩點(diǎn)A,B.
①證明:∠AFM=∠BFN;
②求△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角φ的終邊經(jīng)過點(diǎn)P(3,-4),函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象的相鄰兩條對(duì)稱軸之間的距離等于
π
3
,則f(
π
12
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ln
1
|x|+1
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定點(diǎn)A(3,0),動(dòng)點(diǎn)P(x,y)的坐標(biāo)滿足約束條件
x≥2
y≥2
x+y≤6
,則|
OP
|cos∠AOP(O為坐標(biāo)原點(diǎn))的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①若函數(shù)y=2x的定義域是{x|x≤0},則它的值域是{y|y≤1};
②若函數(shù)y=
1
x
的定義域是{x|x>2},則它的值域是{y|y≤
1
2
}

③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域是{x|-2≤x≤2};
④若函數(shù)y=log2x的值域是{y|y≤3},則它的定義域是{x|x≤8};
你認(rèn)為其中不正確的命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足
x+y≥1
x-y≥0
2x-y-2≥0
,則目標(biāo)函數(shù)z=3x-y的最小值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x+2y≤2
2x+y≥4
y≥-2
,則目標(biāo)函數(shù)z=-x-y的取值范圍是( 。
A、[-4,0]
B、[-8,-2]
C、[-4,-2]
D、[-4,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓方程
x2
a2
+
y2
b2
=1(a>b>0),離心率為
2
2
,過焦點(diǎn)且垂直于x軸的直線交橢圓于A,B兩點(diǎn),AB=2.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)P(x0,y0)滿足
OP
=
OM
+2
ON
,其中M,N是橢圓C上的點(diǎn),直線OM與ON的斜率之積為-
1
2
,求證:x02+2y02為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案