從橢圓+=1(a>b>0)上一點(diǎn)P向x軸作垂線,垂足恰為左焦點(diǎn)F1,A是橢圓與x軸正半軸的交點(diǎn),B是橢圓與y軸正半軸的交點(diǎn),且AB∥OP(O是坐標(biāo)原點(diǎn)),則該橢圓的離心率是(  )

(A)    (B)          (C)        (D)


C

解析:由題意點(diǎn)P(-c,y)(y>0)在橢圓上,

+=1,

解得y=,則kOP=.

又由A(a,0),B(0,b),得kAB=-,

所以=,

即b=c,∴a=c,

所以e=.故選C.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)函數(shù)f(x)= -sin2ωx-sin ωxcos ωx(ω>0),且y=f(x)圖象的一個對稱中心到最近的對稱軸的距離為.

(1)求ω的值;

(2)求f(x)在區(qū)間[π, ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知雙曲線-=1的離心率為2,焦點(diǎn)與橢圓+=1的焦點(diǎn)相同,那么雙曲線的焦點(diǎn)坐標(biāo)為    ;漸近線方程為    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)過雙曲線x2-y2=9左焦點(diǎn)F1的直線交雙曲線的左支于點(diǎn)P,Q,F2為雙曲線的右焦點(diǎn).若|PQ|=7,則△F2PQ的周長為(  )

(A)19   (B)26   (C)43   (D)50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知中心在原點(diǎn)的橢圓C的右焦點(diǎn)為F(1,0),離心率等于,則C的方程是(  )

(A) + =1 (B) +=1

(C) +=1  (D) +=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


橢圓Γ: +=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,焦距為2c.若直線y=(x+c)與橢圓Γ的一個交點(diǎn)滿足∠MF1F2=2∠MF2F1,則該橢圓的離心率等于    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)橢圓+=1(a>b>0)的左,右焦點(diǎn)分別為F1,F2,點(diǎn)P(a,b)滿足|PF2|=|F1F2|.

(1)求橢圓的離心率e;

(2)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn).若直線PF2與圓(x+1)2+(y-)2=16相交于M,N兩點(diǎn),且|MN|=|AB|,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C: +=1(a>b>0),左、右兩個焦點(diǎn)分別為F1,F2,上頂點(diǎn)A(0,b),△AF1F2為正三角形且周長為6.

(1)求橢圓C的標(biāo)準(zhǔn)方程及離心率;

(2)O為坐標(biāo)原點(diǎn),P是直線F1A上的一個動點(diǎn),求|PF2|+|PO|的最小值,并求出此時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


現(xiàn)要完成下列3項(xiàng)抽樣調(diào)查:

①從10盒酸奶中抽取3盒進(jìn)行食品衛(wèi)生檢查.

②科技報告廳有32排,每排有40個座位,有一次報告會恰好坐滿了聽眾.報告會結(jié)束后,為了聽取意見,需要請32名聽眾進(jìn)行座談.

③東方中學(xué)共有160名教職工,其中一般教師120名,行政人員16名,后勤人員24名.為了了解教職工對學(xué)校在校務(wù)公開方面的意見,擬抽取一個容量為20的樣本.

較為合理的抽樣方法是(  )

A.①簡單隨機(jī)抽樣,②系統(tǒng)抽樣,③分層抽樣

B.①簡單隨機(jī)抽樣,②分層抽樣,③系統(tǒng)抽樣

C.①系統(tǒng)抽樣,②簡單隨機(jī)抽樣,③分層抽樣

D.①分層抽樣,②系統(tǒng)抽樣,③簡單隨機(jī)抽樣

查看答案和解析>>

同步練習(xí)冊答案