【題目】如圖,AB是⊙O的一條切線,切點(diǎn)為B,直線ADE、CFD、CGE都是⊙O的割線,已知AC=AB.

(1)若CG=1,CD=4.求 的值.
(2)求證:FG∥AC.

【答案】
(1)解:∵四邊形DEGF內(nèi)接于⊙O,

∴∠CGF=∠CDE,∠CFG=∠CED.

因此△CGF∽△CDE,可得 =

又∵CG=1,CD=4,

=4


(2)解:證明:∵AB與⊙O的相切于點(diǎn)B,ADE是⊙O的割線,

∴AB2=ADAE,

∵AB=AC,

∴AC2=ADAE,可得 = ,

又∵∠EAC=∠DAC,

∴△ADC∽△ACE,可得∠ADC=∠ACE,

∵四邊形DEGF內(nèi)接于⊙O,

∴∠ADC=∠EGF,

因此∠EGF=∠ACE,可得GF∥AC


【解析】(1)根據(jù)圓內(nèi)接四邊形的性質(zhì),證出∠CGF=∠CDE且∠CFG=∠CED,可得△CGF∽△CDE,因此 = =4;(2)根據(jù)切割線定理證出AB2=ADAE,所以AC2=ADAE,證出 = ,結(jié)合∠EAC=∠DAC得到△ADC∽△ACE,所以∠ADC=∠ACE.再根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠ADC=∠EGF,從而∠EGF=∠ACE,可得GF∥AC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平行四邊形ABCD中,AB=2AD,∠DAB=60°,M是BC的中點(diǎn).將△ADM沿DM折起,使面ADM⊥面MBCD,N是CD的中點(diǎn),圖2所示.

(Ⅰ)求證:CM⊥平面ADM;
(Ⅱ)若P是棱AB上的動點(diǎn),當(dāng) 為何值時(shí),二面角P﹣MC﹣B的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于實(shí)數(shù)x,符號[x]表示不超過x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],則下列命題中正確的是  

①函數(shù)f(x)的最大值為1; ②函數(shù)f(x)的最小值為0;

③方程有無數(shù)個根; ④函數(shù)f(x)是增函數(shù).

A. ②③ B. ①②③ C. D. ③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)?-3,3),

滿足f(-x)=-f(x),且對任意x,y,都有f(x)-f(y)=f(xy),當(dāng)x<0時(shí),f(x)>0,f(1)=-2.

(1)求f(2)的值;

(2)判斷f(x)的單調(diào)性,并證明;

(3)若函數(shù)g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列四個正方體中,為正方體的兩個頂點(diǎn),為所在棱的中點(diǎn),則在這四個正方體中,直接與平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足對任意,都有成立,則實(shí)數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,且anan+1=2n , n∈N* , 則數(shù)列{an}的通項(xiàng)公式為(
A.an=( n1
B.an=( n
C.an=
D.an=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點(diǎn)E、F分別在棱BB1、CC1上,且BE= BB1 , C1F= CC1

(1)求平面AEF與平面ABC所成角α的余弦值;
(2)若G為BC的中點(diǎn),A1G與平面AEF交于H,且設(shè) = ,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公差不為0的等差數(shù)列中,已知,其前項(xiàng)和的最大值為( )

A. 25 B. 26 C. 27 D. 28

【答案】B

【解析】設(shè)等差數(shù)列的公差為,

,

,

整理得

,

,

∴當(dāng)時(shí),

最大,且.選B.

點(diǎn)睛:求等差數(shù)列前n項(xiàng)和最值的常用方法:

①利用等差數(shù)列的單調(diào)性, 求出其正負(fù)轉(zhuǎn)折項(xiàng),便可求得和的最值;

將等差數(shù)列的前n項(xiàng)和 (A、B為常數(shù))看作關(guān)于n的二次函數(shù),根據(jù)二次函數(shù)的性質(zhì)求最值.

型】單選題
結(jié)束】
9

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的表面積為( )

A. B. C. 90 D. 81

查看答案和解析>>

同步練習(xí)冊答案