【題目】如圖,四棱錐的底面是直角梯形, , 點(diǎn)在線段,, , 平面.

(1)求證:平面平面

(2)當(dāng)四棱錐的體積最大時,求平面與平面所成二面角的余弦值.

【答案】(1)見解析;(2).

【解析】試題分析:由條件推出四邊形是矩形,得到,再推出, 平面,即可推出平面平面

要使四棱錐的體積取最大值只需取得最大值,當(dāng)且僅當(dāng) 取得最大值36,分別以所在直線為、軸建立空間直角坐標(biāo)系,利用向量法求出平面與平面所成角的余弦值

解析:(1)由可得,

易得四邊形是矩形,,

平面 平面,,

, 平面平面,

平面,∴平面平面

(2)四棱錐的體積為,

要使四棱錐的體積取最大值,只需取得最大值.

由條件可得,

,

當(dāng)且僅當(dāng), 取得最大值36.

分別以所在直線為、軸建立空間直角坐標(biāo)系.

, ,

, ,

設(shè)平面的一個法向量為,, 可得

可得,

同理可得平面的一個法向量為,

設(shè)平面與平面所成二面角為,

.

由于平面與平面所成角為銳二面角,所以余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某單位的食堂中,食堂每天以10元/斤的價格購進(jìn)米粉,然后以4.4元/碗的價格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計(jì)資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進(jìn)了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤.

(1)估計(jì)該天食堂利潤不少于760元的概率;

(2)在直方圖的需求量分組中,以區(qū)間中間值作為該區(qū)間的需求量,以需求量落入該區(qū)間的頻率作為需求量在該區(qū)間的概率,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,離心率,以兩個焦點(diǎn)和短軸的兩個端點(diǎn)為頂點(diǎn)的四邊形的周長為8,面積為.

(1)求橢圓的方程;

(2)過原點(diǎn)的兩條直線, ,交橢圓, , , 四點(diǎn),若,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上各點(diǎn)的橫坐標(biāo)都縮短為原來的倍,縱坐標(biāo)坐標(biāo)都伸長為原來的倍,得到曲線,在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長度,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的極坐標(biāo)方程為

(1)求直線和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)是曲線上的一個動點(diǎn),求它到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市縣鄉(xiāng)教師流失現(xiàn)象非常嚴(yán)重,為了縣鄉(xiāng)孩子們能接受良好教育,某市今年要為兩所縣鄉(xiāng)中學(xué)招聘儲備未來三年的教師,現(xiàn)在每招聘一名教師需要1萬元,若三年后教師嚴(yán)重短缺時再招聘,由于各種因素,則每招聘一名教師需要3萬元,已知現(xiàn)在該市縣鄉(xiāng)中學(xué)無多余教師,為決策應(yīng)招聘多少縣鄉(xiāng)教師搜集并整理了該市50所縣鄉(xiāng)中學(xué)在過去三年內(nèi)的教師流失數(shù),得到如表的頻率分布表:

流失教師數(shù)

6

7

8

9

頻數(shù)

10

15

15

10

以這50所縣鄉(xiāng)中學(xué)流失教師數(shù)的頻率代替一所縣鄉(xiāng)中學(xué)流失教師數(shù)發(fā)生的概率,記表示兩所縣鄉(xiāng)中學(xué)在過去三年共流失的教師數(shù), 表示今年為兩所縣鄉(xiāng)中學(xué)招聘的教師數(shù).為保障縣鄉(xiāng)孩子教育不受影響,若未來三年內(nèi)教師有短缺,則第四年馬上招聘.

(1)求的分布列;

(2)若要求,確定的最小值;

(3)以未來四年內(nèi)招聘教師所需費(fèi)用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( )

A. 設(shè)隨機(jī)變量,則

B. 線性回歸直線不一定過樣本中心點(diǎn)

C. 若兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1

D. 先把高三年級的2000名學(xué)生編號:1到2000,再從編號為1到50的50名學(xué)生中隨機(jī)抽取1名學(xué)生,其編號為,然后抽取編號為, , ,……的學(xué)生,這樣的抽樣方法是分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個時段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度 (單位:),對某種雞的時段產(chǎn)蛋量(單位:) 和時段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個雞舍的時段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.

其中.

(1)根據(jù)散點(diǎn)圖判斷,哪一個更適宜作為該種雞的時段產(chǎn)蛋量關(guān)于雞舍時段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)

(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)已知時段投入成本的關(guān)系為,當(dāng)時段控制溫度為時,雞的時段產(chǎn)蛋量及時段投入成本的預(yù)報(bào)值分別是多少?

附:①對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間幾何體中, 均為邊長為的等邊三角形, 為腰長為的等腰三角形,平面平面,平面平面.

試在平面內(nèi)作一條直線,使得直線上任意一點(diǎn)的連線均與平面平行,并給出詳細(xì)證明;

求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著共享單車的成功運(yùn)營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨即抽取人對共享產(chǎn)品是否對日常生活有益進(jìn)行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

總計(jì)

認(rèn)為共享產(chǎn)品對生活有益

認(rèn)為共享產(chǎn)品對生活無益

總計(jì)

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?

(2)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品增多對生活無益的人員中隨機(jī)抽取人,再從人中隨機(jī)抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.

參與公式:

臨界值表:

查看答案和解析>>

同步練習(xí)冊答案