【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨即抽取人對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:
男 | 女 | 總計 | |
認為共享產(chǎn)品對生活有益 | |||
認為共享產(chǎn)品對生活無益 | |||
總計 |
(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關系?
(2)現(xiàn)按照分層抽樣從認為共享產(chǎn)品增多對生活無益的人員中隨機抽取人,再從人中隨機抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.
參與公式:
臨界值表:
【答案】(1) 可以在犯錯誤的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關系(2)
【解析】試題分析:(1)根據(jù)題中數(shù)據(jù),利用參考公式計算的觀測值,對應查表下結(jié)論即可;
(2)從認為共享產(chǎn)品增多對生活無益的女性中抽取4人,記為,從認為共享產(chǎn)品增多對生活無益的男性中抽取2人,記為,寫出所有的基本事件,即可得到恰有1人是女性的概率.
試題解析:
(1)依題意,在本次的實驗中, 的觀測值,
故可以在犯錯誤的概率不超過0.1%的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關系;
(2)依題意,應該從認為共享產(chǎn)品增多對生活無益的女性中抽取4人,記為,從認為共享產(chǎn)品增多對生活無益的男性中抽取2人,記為,
從以上6人中隨機抽取2人,所有的情況為: , 共15種,其中滿足條件的為共8種情況,故所求概率.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形, , , ,點在線段上,且, , 平面.
(1)求證:平面平面;
(2)當四棱錐的體積最大時,求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: 的焦點為,圓: ,過作垂直于軸的直線交拋物線于、兩點,且的面積為.
(1)求拋物線的方程和圓的方程;
(2)若直線、均過坐標原點,且互相垂直, 交拋物線于,交圓于, 交拋物線于,交圓于,求與的面積比的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的一個焦點與拋物線的焦點重合,且過點.過點的直線交橢圓于, 兩點, 為橢圓的左頂點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機抽取1000人對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的1000人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:
男 | 女 | 總計 | |
認為共享產(chǎn)品對生活有益 | 400 | 300 | 700 |
認為共享產(chǎn)品對生活無益 | 100 | 200 | 300 |
總計 | 500 | 500 | 1000 |
(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過0.1%的前提下,認為共享產(chǎn)品的態(tài)度與性別有關系?
(2)為了答謝參與問卷調(diào)查的人員,該公司對參與本次問卷調(diào)查的人員隨機發(fā)放1張超市的購物券,購物券金額以及發(fā)放的概率如下:
購物券金額 | 20元 | 50元 |
概率 |
現(xiàn)有甲、乙兩人領取了購物券,記兩人領取的購物券的總金額為,求的分布列和數(shù)學期望.
參考公式: .
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)當時,求的單調(diào)區(qū)間;
(2)若的圖象與軸交于兩點,起,求的取值范圍;
(3)令, ,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在平面直角坐標系中,已知直線: (為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程;
(2)設點的極坐標為,直線與曲線的交點為, ,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四面體S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,則該四面體的外接球的表面積為
A. 11π B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com