設(shè)x、y∈R+,S=x+y,P=xy,以下四個(gè)命題:

①若P為定值m,則S有最大值2

②若S=P,則P有最大值4;

③若S=P,則S有最小值4;

④若S2≥kP總成立,則k的取值范圍為k≤4.

其中正確的是

[  ]
A.

③④

B.

②④

C.

②③

D.

①④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:志鴻系列訓(xùn)練必修一數(shù)學(xué)北師版 題型:013

設(shè)全集S={(x,y)|x、y∈R},集合M={(x,y)|=1},N={(x,y)|y≠x+1},則(M∪N)等于

[  ]

A.

B.{(2,3)}

C.(2,3)

D.{(x,y)|y=x+1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:訓(xùn)練必修五數(shù)學(xué)蘇教版 蘇教版 題型:022

設(shè)x、y∈R+,S=x+y,P=xy,以下四個(gè)命題中正確命題的序號(hào)是________.(把你認(rèn)為正確的命題序號(hào)都填上)

①若P為定值m,則S有最大值;②若S=P,則P有最大值4;③若S=P,則S有最小值4;④若S2≥kP總成立,則k的取值范圍為k≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省黃岡市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分13分)已知橢圓C1的離心率為,直線(xiàn)l: y-=x+2與.以原點(diǎn)為圓心、橢圓C1的短半軸長(zhǎng)為半徑的圓O相切.

(1)求橢圓C1的方程;

(ll)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線(xiàn)l2過(guò)點(diǎn)F價(jià)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線(xiàn)l2垂直于l1,垂足為點(diǎn)P,線(xiàn)段PF2的垂直平分線(xiàn)交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;

(III)過(guò)橢圓C1的左頂點(diǎn)A作直線(xiàn)m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形,     求直線(xiàn)m的斜率k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

求圓心在直線(xiàn)y=-2x上,并且經(jīng)過(guò)點(diǎn)A(2,-1),與直線(xiàn)x+y=1相切的圓的方程.

【解析】利用圓心和半徑表示圓的方程,首先

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)  

∴r=,

故所求圓的方程為:=2

解:法一:

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圓的方程為:=2                   ………………………12分

法二:由條件設(shè)所求圓的方程為: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圓的方程為:=2             ………………………12分

其它方法相應(yīng)給分

 

查看答案和解析>>

同步練習(xí)冊(cè)答案