精英家教網 > 高中數學 > 題目詳情
已知等差數列{an}中,a2=6,a5=15,則數列{an}的通項公式為
3n
3n
分析:設等差數列的公差為d,根據題意建立關于a1、d的方程組,解出的a1、d值,即可得到數列{an}的通項公式.
解答:解:設等差數列的公差為d,由題意
a1+d=6
a1+4d=15
,解之得
a1=3
d=3

∴an=3+(n-1)×3=3n
故答案為:3n
點評:本題給出等差數列的第2、5兩項,求它的通項公式,著重考查了等差數列的通項公式及其應用等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知等差數列{an},公差d不為零,a1=1,且a2,a5,a14成等比數列;
(1)求數列{an}的通項公式;
(2)設數列{bn}滿足bn=an3n-1,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}滿足a2=0,a6+a8=-10
(1)求數列{an}的通項公式;     
(2)求數列{|an|}的前n項和;
(3)求數列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知等差數列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若{an}為遞增數列,請根據如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案