建造一個(gè)容積為50,高為2長(zhǎng)方體的無(wú)蓋鐵盒,問(wèn)這個(gè)鐵盒底面的長(zhǎng)和寬各為多少時(shí)材料最?

長(zhǎng)和寬均為5cm時(shí),材料最省,是65cm2

解析試題分析:由于長(zhǎng)方體鐵盒的容積為50,高為2㎝,因此其底面積為25c㎡,
設(shè)底面一邊長(zhǎng)為x㎝,則另一邊長(zhǎng)為㎝,
所以,鐵盒的表面積為s=25+4x+,當(dāng)且僅當(dāng)時(shí),表面積由最小值,故長(zhǎng)和寬均為5cm時(shí),材料最省,是65cm2
考點(diǎn):函數(shù)模型,均值定理的應(yīng)用。
點(diǎn)評(píng):中檔題,函數(shù)應(yīng)用問(wèn)題,在高考題中常常出現(xiàn),一般的,需要“審清題意,設(shè)出變量,構(gòu)建函數(shù)模型,解決數(shù)學(xué)問(wèn)題”。求最值時(shí) ,可利用均值定理,有時(shí)也可利用導(dǎo)數(shù)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) 是自然對(duì)數(shù)的底數(shù))的最小值為
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)已知,試解關(guān)于的不等式
(Ⅲ)已知.若存在實(shí)數(shù),使得對(duì)任意的,都有,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),若f(x)在x=1處的切線(xiàn)方程為3x+y-6=0
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若對(duì)任意的,都有f(x)成立,求函數(shù)g(t)的最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

美國(guó)華爾街的次貸危機(jī)引起的金融風(fēng)暴席卷全球,低迷的市場(chǎng)造成產(chǎn)品銷(xiāo)售越來(lái)越難,為此某廠家舉行大型的促銷(xiāo)活動(dòng),經(jīng)測(cè)算該產(chǎn)品的銷(xiāo)售量P萬(wàn)件(生產(chǎn)量與銷(xiāo)售量相等)與促銷(xiāo)費(fèi)用萬(wàn)元滿(mǎn)足,已知生產(chǎn)該產(chǎn)品還需投入成本萬(wàn)元(不含促銷(xiāo)費(fèi)用),產(chǎn)品的銷(xiāo)售價(jià)格定為元.
(Ⅰ)將該產(chǎn)品的利潤(rùn)萬(wàn)元表示為促銷(xiāo)費(fèi)用萬(wàn)元的函數(shù);
(Ⅱ)促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)p:函數(shù)y=loga(x+1)(a>0且a≠1)在(0,+∞)上單調(diào)遞減; q:曲線(xiàn)y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果p∧q為假,p∨q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

判斷y=1-2x3上的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知m∈R,對(duì)p:x1和x2是方程x2-ax-2=0的兩個(gè)根,不等式|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+有兩個(gè)不同的零點(diǎn).求使“p且q”為假命題、“p或q”為真命題的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為億元,其中用于風(fēng)景區(qū)改造為億元。該市決定建立生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列三個(gè)條件:①每年用于風(fēng)景區(qū)改造費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;②每年改造生態(tài)環(huán)境總費(fèi)用至少億元,至多億元;③每年用于風(fēng)景區(qū)改造費(fèi)用不得低于每年改造生態(tài)環(huán)境總費(fèi)用的15%,但不得每年改造生態(tài)環(huán)境總費(fèi)用的22%。
(1)若,,請(qǐng)你分析能否采用函數(shù)模型y作為生態(tài)環(huán)境改造投資方案;
(2)若、取正整數(shù),并用函數(shù)模型y作為生態(tài)環(huán)境改造投資方案,請(qǐng)你求出、的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一邊長(zhǎng)為的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為的小正方形,然后做成一個(gè)無(wú)蓋方盒。
(1)試把方盒的容積表示為的函數(shù);(2)多大時(shí),方盒的容積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案