【題目】已知橢圓的焦點(diǎn)坐標(biāo)為,且短軸一頂點(diǎn)滿足.
(1)求橢圓的方程;
(2)過(guò)的直線與橢圓交于不同的兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)當(dāng)直線,內(nèi)切圓面積的最大值為
【解析】
試題分析:(1)設(shè)橢圓方程,由焦點(diǎn)坐標(biāo)可得,由
可得,又,由此可求橢圓方程;
(2)設(shè),不妨,設(shè)的內(nèi)切圓的半徑為,則的周長(zhǎng)為8,,因此最大,就最大.設(shè)直線的方程為,與橢圓方程聯(lián)立,從而可表示的面積,利用換元法,借助于導(dǎo)數(shù),即可求得結(jié)論
試題解析:(1)由題,設(shè)橢圓方程,不妨設(shè),則,∴,故橢圓方程為.
(2)設(shè),不妨設(shè),設(shè)的內(nèi)切圓半徑為,則的周長(zhǎng)為8,面積,因此最大,就最大,由題知,直線的斜率不為零,可設(shè)直線的方程為,由得,則,
令,則,則,令,則,當(dāng)時(shí),,在上單調(diào)遞增,故有,即當(dāng)時(shí),,,這時(shí)所求內(nèi)切圓面積的最大值為.
故直線,內(nèi)切圓面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前項(xiàng)和為Sn , 若點(diǎn)An(n, )在函數(shù)f(x)=﹣x+c的圖像上運(yùn)動(dòng),其中c是與x無(wú)關(guān)的常數(shù)且a1=3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=tanan+1tanan , tan195+tan3=atan2,求數(shù)列{bn}的前99項(xiàng)和(用含a的式子表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn),則下列結(jié)論中正確結(jié)論的序號(hào)是__________.
①;
②直線與平面所成角的正弦值為定值;
③當(dāng)為定值,則三棱錐的體積為定值;
④異面直線所成的角的余弦值為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐的底面為直角梯形, , ,且, .
(1)求證:平面平面;
(2)設(shè),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在正方體ABCD﹣A1B1C1D1的表面上運(yùn)動(dòng),且P到直線BC與直線C1D1的距離相等,如果將正方體在平面內(nèi)展開(kāi),那么動(dòng)點(diǎn)P的軌跡在展開(kāi)圖中的形狀是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】精準(zhǔn)扶貧是鞏固溫飽成果、加快脫貧致富、實(shí)現(xiàn)中華民族偉大“中國(guó)夢(mèng)”的重要保障.某地政府在對(duì)某鄉(xiāng)鎮(zhèn)企業(yè)實(shí)施精準(zhǔn)扶貧的工作中,準(zhǔn)備投入資金將當(dāng)?shù)剞r(nóng)產(chǎn)品進(jìn)行二次加工后進(jìn)行推廣促銷,預(yù)計(jì)該批產(chǎn)品銷售量萬(wàn)件(生產(chǎn)量與銷售量相等)與推廣促銷費(fèi)萬(wàn)元之間的函數(shù)關(guān)系為(其中推廣促銷費(fèi)不能超過(guò)5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬(wàn)元(不包括推廣促銷費(fèi)用),若加工后的每件成品的銷售價(jià)格定為元/件.
(1)試將該批產(chǎn)品的利潤(rùn)萬(wàn)元表示為推廣促銷費(fèi)萬(wàn)元的函數(shù);(利潤(rùn)=銷售額-成本-推廣促銷費(fèi))
(2)當(dāng)推廣促銷費(fèi)投入多少萬(wàn)元時(shí),此批產(chǎn)品的利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若學(xué)生一天學(xué)習(xí)數(shù)學(xué)超過(guò)兩個(gè)小時(shí)的概率為(每天是相互獨(dú)立沒(méi)有影響的),一周內(nèi)至少有四天每天學(xué)習(xí)數(shù)學(xué)超過(guò)兩個(gè)小時(shí),就說(shuō)該生本周數(shù)學(xué)學(xué)習(xí)是投入的.
(Ⅰ)①設(shè)學(xué)生本周一天學(xué)習(xí)數(shù)學(xué)超過(guò)兩個(gè)小時(shí)的天數(shù)為求的分布列與數(shù)學(xué)期望
②求學(xué)生本周數(shù)學(xué)學(xué)習(xí)投入的概率.
(Ⅱ)為了研究學(xué)生學(xué)習(xí)數(shù)學(xué)的投入程度和本周數(shù)學(xué)周練成績(jī)的關(guān)系,隨機(jī)在年級(jí)中抽取了名學(xué)生進(jìn)行調(diào)查,所得數(shù)據(jù)如下表所示:
成績(jī)理想 | 成績(jī)不太理想 | 合計(jì) | |
數(shù)學(xué)學(xué)習(xí)投入 | 20 | 10 | 30 |
數(shù)學(xué)學(xué)習(xí)不太投入 | 10 | 15 | 25 |
合計(jì) | 30 | 25 | 55 |
根據(jù)上述數(shù)據(jù)能否有的把握認(rèn)為“學(xué)生學(xué)習(xí)數(shù)學(xué)的投入程度和本周數(shù)學(xué)成績(jī)兩事件有關(guān)”?
附:
10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并用定義證明函數(shù)f(x)在其定義域上的單調(diào)性.
(3)若對(duì)任意的t1,不等式f()+f()<0恒成立,求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com