【題目】精準(zhǔn)扶貧是鞏固溫飽成果、加快脫貧致富、實(shí)現(xiàn)中華民族偉大“中國夢”的重要保障.某地政府在對某鄉(xiāng)鎮(zhèn)企業(yè)實(shí)施精準(zhǔn)扶貧的工作中,準(zhǔn)備投入資金將當(dāng)?shù)剞r(nóng)產(chǎn)品進(jìn)行二次加工后進(jìn)行推廣促銷,預(yù)計該批產(chǎn)品銷售量萬件(生產(chǎn)量與銷售量相等)與推廣促銷費(fèi)萬元之間的函數(shù)關(guān)系為(其中推廣促銷費(fèi)不能超過5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬元(不包括推廣促銷費(fèi)用),若加工后的每件成品的銷售價格定為元/件.
(1)試將該批產(chǎn)品的利潤萬元表示為推廣促銷費(fèi)萬元的函數(shù);(利潤=銷售額-成本-推廣促銷費(fèi))
(2)當(dāng)推廣促銷費(fèi)投入多少萬元時,此批產(chǎn)品的利潤最大?最大利潤為多少?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的所有棱長都是, 平面, , 分別是, 的中點(diǎn).
()求證: 平面.
()求二面角的余弦值.
()求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點(diǎn)坐標(biāo)為,且短軸一頂點(diǎn)滿足.
(1)求橢圓的方程;
(2)過的直線與橢圓交于不同的兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)貨卡車以每小時千米的速度勻速行駛130千米 (單位:千米/小時).假設(shè)汽油的價格是每升6元,而汽車每小時耗油升,司機(jī)的工資是每小時30元.
(1)求這次行車總費(fèi)用關(guān)于的表達(dá)式;
(2)當(dāng)為何值時,這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四面體ABCD的頂點(diǎn)C在平面α內(nèi),且直線BC與平面α所成角為15°,頂點(diǎn)B在平面α上的射影為點(diǎn)O,當(dāng)頂點(diǎn)A與點(diǎn)O的距離最大時,直線CD與平面α所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.
(1)若函數(shù)h(x)=f(x)﹣g(x)在[﹣2,0]上有兩個零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若存在x0∈R,使得f(x0)≤0與g(x0)≤0同時成立,求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A、B、C是拋物線y2=4x上不同的三點(diǎn),若點(diǎn)F(1,0)滿足 ,則△ABF面積的最大值為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列所給4個圖象中,與所給3件事吻合最好的順序?yàn)?/span> ( )
(1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);
(2)我出發(fā)后,心情輕松,緩緩行進(jìn),后來為了趕時間開始加速;
(3)我騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間.
A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com