【題目】已知函數(shù)f(x)=cos ,g(x)=exf(x),其中e為自然對數(shù)的底數(shù).
(1)求曲線y=g(x)在點(0,g(0))處的切線方程;
(2)若對任意 時,方程g(x)=xf(x)的解的個數(shù),并說明理由.
【答案】
(1)解:由題意得,f(x)=sinx,g(x)=exsinx,
∴g(0)=e0sin0=0;
g'(x)=ex(cosx+sinx),∴g'(0)=1;
故曲線y=g(x)在點(0,g(0))處的切線方程為y=x
(2)解:設(shè)H(x)=g(x)﹣xf(x), ;
則當(dāng) 時,
H'(x)=ex(cosx+sinx)﹣sinx﹣xcosx=(ex﹣x)cosx﹣(ex﹣1)sinx,
當(dāng) ,顯然有 ;
當(dāng) 時,由 ,
即有 ,
即有H'(x)<0,
所以當(dāng) 時,總有H'(x)<0,
故H(x)在 上單調(diào)遞減,
故函數(shù)H(x)在 上至多有一個零點;
又 , ;
且H(x)在 上是連續(xù)不斷的,
故函數(shù)H(x)在 上有且只有一個零點
【解析】(1)利用導(dǎo)數(shù)的幾何意義即可求出曲線y=g(x)在點(0,g(0))處的切線方程;(2)構(gòu)造函數(shù)H(x)=g(x)﹣xf(x), ;利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,
根據(jù)根的存在性定理即可判斷函數(shù)H(x)在 上零點的個數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a>0,b>0( )
A.若lna+2a=lnb+3b,則a>b
B.2a+2a=2b+3b,則a<b
C.若lna﹣2a=lnb﹣3b,則a>b
D.2a﹣2a=2b﹣3b,則a<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一顆骰子先后拋擲2次,觀察向上的點數(shù),求:
(1)兩數(shù)之和為5的概率;
(2)兩數(shù)中至少有一個奇數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a、b、c分別是角A、B、C的對邊,且 =﹣ .
(Ⅰ)求角B的大。
(Ⅱ)若b= ,a+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)的定義域為(0,+∞),且對一切x>0,y>0都有f=f(x)-f(y),當(dāng)x>1時,有f(x)>0。
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性并證明;
(3)若f(6)=1,解不等式f(x+3)-f<2;
(4)若f(4)=2,求f(x)在[1,16]上的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx+cosωx的最小正周期為π,x∈R,ω>0是常數(shù).
(1)求ω的值;
(2)若f(+)= , θ∈(0,),求sin2θ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( 。
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過點,且圓心在直線上,過點的直線交圓于兩點,過點分別做圓的切線,記為.
(Ⅰ)求圓的方程;
(Ⅱ)求證:直線的交點都在同一條直線上,并求出這條直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com