【題目】如圖,在四棱錐中,平面平面; , , , .
(1)證明: 平面;
(2)求直線與平面所成的角的正切值.
【答案】(1)詳見(jiàn)解析;(2).
【解析】試題分析:(1)連結(jié),在直角梯形中,由勾股定理證明,再證平面平面,從而平面;(2)在直角梯形中,證明,再證平面.
作于的延長(zhǎng)線交于,連結(jié),證明平面,從而可得是直線與平面所成的角.在中,求,在中,求,在中,求,
即得直線與平面所成的角的正切值.
(1)連結(jié),在直角梯形中,由,得,
由得,即,
又平面平面,從而平面.
(2)在直角梯形中,由,得,
又平面平面,所以平面.
作于的延長(zhǎng)線交于,連結(jié),則平面,
所以是直線與平面所成的角.
在中,由,,得,,
在中,,,得,
在中,由,得,
所以直線與平面所成的角的正切值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等比數(shù)列{an}中,a2=3,a5=81,bn=1+2log3an .
(1)求數(shù)列{bn}的前n項(xiàng)的和;
(2)已知數(shù)列 的前項(xiàng)的和為Sn , 證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解初三學(xué)生女生身高情況,某中學(xué)對(duì)初三女生身高進(jìn)行了一次測(cè)量,所得數(shù)據(jù)整理后列出了頻率分布表如下:
組 別 | 頻數(shù) | 頻率 |
[145.5,149.5) | 1 | 0.02 |
[149.5,153.5) | 4 | 0.08 |
[153.5,157.5) | 20 | 0.40 |
[157.5,161.5) | 15 | 0.30 |
[161.5,165.5) | 8 | 0.16 |
[165.5,169.5) | m | n |
合 計(jì) | M | N |
(1)求出表中所表示的數(shù);
(2)畫出頻率分布直方圖;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos ,g(x)=exf(x),其中e為自然對(duì)數(shù)的底數(shù).
(1)求曲線y=g(x)在點(diǎn)(0,g(0))處的切線方程;
(2)若對(duì)任意 時(shí),方程g(x)=xf(x)的解的個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(-1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形和矩形所在的平面互相垂直, ,,M是線段的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證: 平面;
(Ⅲ) 求點(diǎn)到面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ln(x+m)
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com