【題目】已知點(diǎn)A(-1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是________
【答案】
【解析】
解法一:先求得直線y=ax+b(a>0)與x軸的交點(diǎn)為M(﹣,0),由﹣≤0可得點(diǎn)M在射線OA上.求出直線和BC的交點(diǎn)N的坐標(biāo),①若點(diǎn)M和點(diǎn)A重合,求得b=;②若點(diǎn)M在點(diǎn)O和點(diǎn)A之間,求得<b<; ③若點(diǎn)M在點(diǎn)A的左側(cè),求得>b>1﹣.再把以上得到的三個(gè)b的范圍取并集,可得結(jié)果.
解法二:考查臨界位置時(shí)對(duì)應(yīng)的b值,綜合可得結(jié)論.
解法一:由題意可得,三角形ABC的面積為 =1,
由于直線y=ax+b(a>0)與x軸的交點(diǎn)為M(﹣,0),
由直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,可得b>0,
故﹣≤0,故點(diǎn)M在射線OA上.
設(shè)直線y=ax+b和BC的交點(diǎn)為N,則由可得點(diǎn)N的坐標(biāo)為(,).
①若點(diǎn)M和點(diǎn)A重合,則點(diǎn)N為線段BC的中點(diǎn),故N(,),
把A、N兩點(diǎn)的坐標(biāo)代入直線y=ax+b,求得a=b=.
②若點(diǎn)M在點(diǎn)O和點(diǎn)A之間,此時(shí)b>,點(diǎn)N在點(diǎn)B和點(diǎn)C之間,
由題意可得三角形NMB的面積等于,
即=,即 =,可得a=>0,求得 b<,
故有<b<.
③若點(diǎn)M在點(diǎn)A的左側(cè),則b<,由點(diǎn)M的橫坐標(biāo)﹣<﹣1,求得b>a.
設(shè)直線y=ax+b和AC的交點(diǎn)為P,則由 求得點(diǎn)P的坐標(biāo)為(,),
此時(shí),由題意可得,三角形CPN的面積等于,即 (1﹣b)|xN﹣xP|=,
即(1﹣b)|﹣|=,化簡(jiǎn)可得2(1﹣b)2=|a2﹣1|.
由于此時(shí) b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2 .
兩邊開方可得 (1﹣b)=<1,∴1﹣b<,化簡(jiǎn)可得 b>1﹣,
故有1﹣<b<.
再把以上得到的三個(gè)b的范圍取并集,可得b的取值范圍應(yīng)是 ,
解法二:當(dāng)a=0時(shí),直線y=ax+b(a>0)平行于AB邊,
由題意根據(jù)三角形相似且面積比等于相似比的平方可得=,b=1﹣
由于a>0,∴b>1﹣.
當(dāng)a逐漸變大時(shí),b也逐漸變大,
當(dāng)b=時(shí),直線經(jīng)過(guò)點(diǎn)(0,),再根據(jù)直線平分△ABC的面積,故a不存在,故b<.
綜上可得,1﹣<b<,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽.若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨(dú)立.
(1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;
(2)記X為比賽決出勝負(fù)時(shí)的總局?jǐn)?shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交警部門從某市參加年汽車駕照理論考試的名學(xué)員中用系統(tǒng)抽樣的方法抽出名學(xué)員,將其成績(jī)(均為整數(shù))分成四段,,,后畫出的頻率分布直方圖如圖所示,回答下列問(wèn)題:
(1)求圖中的值;
(2)估計(jì)該市年汽車駕照理論考試及格的人數(shù)(不低于分為及格)及抽樣學(xué)員成績(jī)的平均數(shù);
(3)從第一組和第二組的樣本中任意選出名學(xué)員,求名學(xué)員均為第一組學(xué)員的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中, ,數(shù)列滿足.
(1)求證:數(shù)列是等差數(shù)列。
(2)試確定數(shù)列中的最大項(xiàng)和最小項(xiàng),并求出相應(yīng)項(xiàng)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a∈R,函數(shù)f(x)=(-x2+ax)ex(x∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(-1,1)上單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com