【題目】如圖,點是橢圓的一個頂點,的長軸是圓的直徑,、是過點且互相垂直的兩條直線,其中交圓兩點,交橢圓于另一點.

1)求橢圓的方程;

2)求面積的最大值及取得最大值時直線的方程.

【答案】1;當(dāng)直線的方程為時,的面積取最大值.

【解析】

試題(1)首先根據(jù)題中條件求出的值,進(jìn)而求出橢圓的方程;(2)先設(shè)直線的方程為,先利用弦心距、半徑長以及弦長之間滿足的關(guān)系(勾股定理)求出直線截圓所得的弦長

,然后根據(jù)直線兩者所滿足的垂直關(guān)系設(shè)直線,將直線的方程與橢圓的方程聯(lián)立,求出直線截橢圓的弦長,然后求出的面積的表達(dá)式,并利用基本不等式求出的面積的最大值,并求出此時直線的方程.

試題解析:(1)由題意得

橢圓的方程為;

2)設(shè)、,

由題意知直線的斜率存在,不妨設(shè)其為,則直線的方程為,

故點到直線的距離為,又圓,

,

直線的方程為,

,消去,整理得,

,代入的方程得

,

設(shè)的面積為,則

,

,

當(dāng)且僅當(dāng),即時上式取等號,

當(dāng)時,的面積取得最大值,

此時直線的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定橢圓0,稱圓心在原點,半徑為的圓是橢圓準(zhǔn)圓.若橢圓的一個焦點為,其短軸上的一個端點到的距離為

1)求橢圓的方程和其準(zhǔn)圓方程;

2)點是橢圓準(zhǔn)圓上的一個動點,過點作直線,使得與橢圓都只有一個交點.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù),),以原點為極點,以軸正半軸建立極坐標(biāo)系,曲線的極坐標(biāo)系方程為.

1)寫出直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)若直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20171月至201912月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論錯誤的是( 。

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位數(shù)為30萬人

D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門學(xué)科中任選3門.若同學(xué)甲必選物理,則下列說法正確的是(

A.甲、乙、丙三人至少一人選化學(xué)與全選化學(xué)是對立事件

B.甲的不同的選法種數(shù)為15

C.已知乙同學(xué)選了物理,乙同學(xué)選技術(shù)的概率是

D.乙、丙兩名同學(xué)都選物理的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某市高中某學(xué)科競賽中,某一個區(qū)4000名考生的參賽成績統(tǒng)計如圖所示.

1)求這4000名考生的競賽平均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);

2)記70分以上為優(yōu)秀,70分及以下為合格,結(jié)合頻率分布直方圖完成下表,并判斷是否有99%的把握認(rèn)為該學(xué)科競賽成績與性別有關(guān)?

合格

優(yōu)秀

合計

男生

720

   

   

女生

   

1020

   

合計

   

   

4000

附:

pk2k0

0.010

0.005

0.001

k0

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省新高考將實行模式,“3”為全國統(tǒng)考科目語文數(shù)學(xué)外語,所有學(xué)生必考;“1”為首選科目,考生須在物理歷史兩科中選擇一科;“2”為再選科目,考生可在化學(xué)生物思想政治地理4個科目中選擇兩科.某考生已經(jīng)確定首選科目為物理,如果他從再選科目中隨機(jī)選擇兩科,則思想政治被選中的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四面體中,,平面平面,且.

(1)證明:平面

(2)設(shè)為棱的中點,當(dāng)四面體的體積取得最大值時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查國企員工對新個稅法的滿意程度,研究人員在地各個國企中隨機(jī)抽取了1000名員工進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計成如下的頻率分布表,其中.(計算結(jié)果保留兩位小數(shù))

分?jǐn)?shù)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

頻率

0.08

0.35

0.27

1)試估計被調(diào)查的員工的滿意程度的中位數(shù);

2)若把每組的組中值作為該組的滿意程度,試估計被調(diào)查的員工的滿意程度的平均數(shù).

查看答案和解析>>

同步練習(xí)冊答案