【題目】平面以任意角度截正方體,所截得的截面圖形可以是_____填上所有你認為正確的序號

正三邊形 正四邊形 正五邊形 正六邊形 鈍角三角形 等腰梯形 非矩形的平行四邊形

【答案】

【解析】

正方體有六個面,用平面去截正方體時最多與六個面相交得正六邊形,最少與三個面相交得正三邊形,因此用一個平面去截一正方體,截面可能為正三邊形,正四邊形,正六邊形,等腰梯形,非矩形的平行四邊形.

解:畫出截面圖形如圖:

可以畫出三邊形,但不能畫出直角三角形和鈍角三角形,故正確,錯誤;

可以畫出正四邊形,故正確;

經過正方體的一個頂點去切就可得到五邊形但此時不可能是正五邊形,故錯誤;.

正方體有六個面,用平面去截正方體時最多與六個面相交得六邊形,且可以畫出正六邊形,故正確;

可以畫出梯形但不是直角梯形,故正確.

可以畫出非矩形的平行四邊形,故

故平面以任意角度截正方體,所截得的截面圖形可以是:正三邊形,正四邊形,正六邊形,等腰梯形,非矩形的平行四邊形.

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給定下列四個命題:

若一個平面內的兩條直線與另一個平面都平行,那么這兩個平面相互平行;

若一個平面經過另一個平面的垂線,那么這兩個平面相互垂直;

垂直于同一直線的兩條直線相互平行;

若兩個平面垂直,那么一個平面內與它們的交線不垂直的直線與另一個平面也不垂直.

其中,為真命題的是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的長度單位建立坐標系.已知直線的極坐標方程為,曲線的參數(shù)方程為為參數(shù)).

(1)求曲線的普通方程和直線的直角坐標方程;

(2)直線上有一點,設直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)的定義域為[-1,1],當時,。

(1)求函數(shù)上的值域;

(2)若時,函數(shù)的最小值為-2,求實數(shù)λ的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若在其定義域內存在實數(shù),使得成立,則稱有“※點”。

(1)判斷函數(shù)上是否有“※點”。并說明理由;

(2)若函數(shù)上有“※點”,求正實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】10四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB,BD,DC,CA于點EF,GH

1求四面體ABCD的體積;

2證明四邊形EFGH是矩形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.

(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點,滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:

①存在實數(shù),使; ②函數(shù)是偶函數(shù);

③若是第一象限的角,且,則;

④直線是函數(shù)的一條對稱軸;

⑤函數(shù)的圖像關于點成對稱中心圖形.

其中正確命題的序號是__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國南北朝時期的著作《孫子算經》中,對同余除法有較深的研究.設

為整數(shù),若除得的余數(shù)相同,則稱對模同余,記為,,則的值可以是

A. 2015 B. 2016 C. 2017 D. 2018

查看答案和解析>>

同步練習冊答案