【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點,滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.
【答案】
(1)證明:∵PA⊥底面ABCD,AD⊥AB,
以A為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,
∵AD=DC=AP=2,AB=1,點E為棱PC的中點.
∴B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(1,1,1)
∴ =(0,1,1), =(2,0,0)
∵ =0,
∴BE⊥DC;
(2)解:∵ =(﹣1,2,0), =(1,0,﹣2),
設(shè)平面PBD的法向量 =(x,y,z),
由 ,得 ,
令y=1,則 =(2,1,1),
則直線BE與平面PBD所成角θ滿足:
sinθ= = = ,
故直線BE與平面PBD所成角的正弦值為 .
(3)解:∵ =(1,2,0), =(﹣2,﹣2,2), =(2,2,0),
由F點在棱PC上,設(shè) =λ =(﹣2λ,﹣2λ,2λ)(0≤λ≤1),
故 = + =(1﹣2λ,2﹣2λ,2λ)(0≤λ≤1),
由BF⊥AC,得 =2(1﹣2λ)+2(2﹣2λ)=0,
解得λ= ,
即 =(﹣ , , ),
設(shè)平面FBA的法向量為 =(a,b,c),
由 ,得
令c=1,則 =(0,﹣3,1),
取平面ABP的法向量 =(0,1,0),
則二面角F﹣AB﹣P的平面角α滿足:
cosα= = = ,
故二面角F﹣AB﹣P的余弦值為:
【解析】(1)以A為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,求出BE,DC的方向向量,根據(jù) =0,可得BE⊥DC;(2)求出平面PBD的一個法向量,代入向量夾角公式,可得直線BE與平面PBD所成角的正弦值;(3)根據(jù)BF⊥AC,求出向量 的坐標(biāo),進(jìn)而求出平面FAB和平面ABP的法向量,代入向量夾角公式,可得二面角F﹣AB﹣P的余弦值.
【考點精析】解答此題的關(guān)鍵在于理解空間角的異面直線所成的角的相關(guān)知識,掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通常表明地震能量大小的尺度是里氏震級,其計算公式為:,其中,是被測地震的最大振幅,是“標(biāo)準(zhǔn)地震”的振幅(使用標(biāo)準(zhǔn)地震振幅是為了修正測震儀距實際震中的距離造成的偏差)。
(1)假設(shè)在一次地震中,一個距離震中100千米的測震儀記錄的地震最大振幅是30,此時標(biāo)準(zhǔn)地震的振幅是0.001,計算這次地震的震級(精確到0.1);
(2)5級地震給人的震感已比較明顯,計算8級地震的最大振幅是5級地震的最大振幅的多少倍?
(以下數(shù)據(jù)供參考:, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“漸減數(shù)”是指每個數(shù)字比其左邊數(shù)字小的正整數(shù)(如98765),若把所有的五位漸減數(shù)按從小到大的順序排列,則第20個數(shù)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面以任意角度截正方體,所截得的截面圖形可以是_____填上所有你認(rèn)為正確的序號
正三邊形 正四邊形 正五邊形 正六邊形 鈍角三角形 等腰梯形 非矩形的平行四邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在充分競爭的市場環(huán)境中,產(chǎn)品的定價至關(guān)重要,它將影響產(chǎn)品的銷量,進(jìn)而影響生產(chǎn)成本、品牌形象等某公司根據(jù)多年的市場經(jīng)驗,總結(jié)得到了其生產(chǎn)的產(chǎn)品A在一個銷售季度的銷量單位:萬件與售價單位:元之間滿足函數(shù)關(guān)系,A的單件成本單位:元與銷量y之間滿足函數(shù)關(guān)系.
當(dāng)產(chǎn)品A的售價在什么范圍內(nèi)時,能使得其銷量不低于5萬件?
當(dāng)產(chǎn)品A的售價為多少時,總利潤最大?注:總利潤銷量售價單件成本
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y=sin(2x+1)的圖象,只需把y=sin2x的圖象上所有的點( )
A.向左平行移動 個單位長度
B.向右平行移動 個單位長度
C.向左平行移動1個單位長度
D.向右平行移動1個單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂:每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得﹣200分).設(shè)每次擊鼓出現(xiàn)音樂的概率為 ,且各次擊鼓出現(xiàn)音樂相互獨立.
(1)設(shè)每盤游戲獲得的分?jǐn)?shù)為X,求X的分布列;
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
(3)玩過這款游戲的許多人都發(fā)現(xiàn).若干盤游戲后,與最初分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關(guān)知識分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位招聘面試,每次從試題庫隨機(jī)調(diào)用一道試題,若調(diào)用的是A類型試題,則使用后該試題回庫,并增補(bǔ)一道A類試題和一道B類型試題入庫,此次調(diào)題工作結(jié)束;若調(diào)用的是B類型試題,則使用后該試題回庫,此次調(diào)題工作結(jié)束.試題庫中現(xiàn)共有n+m道試題,其中有n道A類型試題和m道B類型試題,以X表示兩次調(diào)題工作完成后,試題庫中A類試題的數(shù)量.
(Ⅰ)求X=n+2的概率;
(Ⅱ)設(shè)m=n,求X的分布列和均值(數(shù)學(xué)期望)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com