【題目】已知某種新型病毒的傳染能力很強,給人們生產(chǎn)和生活帶來很大的影響,所以創(chuàng)新研發(fā)疫苗成了當務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上這種新型冠狀病毒的疫苗的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:
研發(fā)費用(百萬元) | 2 | 3 | 6 | 10 | 13 | 14 |
銷量(萬盒) | 1 | 1 | 2 | 2.5 | 4 | 4.5 |
(1)根據(jù)上表中的數(shù)據(jù),建立關(guān)于的線性回歸方程(用分數(shù)表示);
(2)根據(jù)所求的回歸方程,估計當研發(fā)費用為1600萬元時,銷售量為多少?
參考公式:,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為( )
A. B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,點,點是曲線上的動點,為線段的中點.
(1)寫出曲線的參數(shù)方程,并求出點的軌跡的直角坐標方程;
(2)已知點,直線與曲線的交點為,若線段的中點為,求線段長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,以原點為圓心,橢圓的長半軸為半徑的圓與直線相切.
(1)求橢圓的標準方程;
(2)已知點, 為動直線與橢圓的兩個交點,問:在軸上是否存在點,使為定值?若存在,試求出點的坐標和定值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把方程表示的曲線作為函數(shù)的圖象,則下列結(jié)論正確的是( )
①在R上單調(diào)遞減
②的圖像關(guān)于原點對稱
③的圖象上的點到坐標原點的距離的最小值為3
④函數(shù)不存在零點
A.①③B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】稠環(huán)芳香烴化合物中有不少是致癌物質(zhì),比如學(xué)生鐘愛的快餐油炸食品中會產(chǎn)生苯并芘,它是由一個苯環(huán)和一個芘分子結(jié)合而成的稠環(huán)芳香烴類化合物,長期食用會致癌.下面是一組稠環(huán)芳香烴的結(jié)構(gòu)簡式和分子式:
名稱 | 萘 | 蒽 | 并四苯 | … | 并n苯 |
結(jié)構(gòu)簡式 | … | … | |||
分子式 | … | … |
由此推斷并十苯的分子式為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求直線與曲線的普通方程;
(2)若直線與曲線交于、兩點,點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元五世紀,數(shù)學(xué)家祖沖之估計圓周率的值的范圍是:,為紀念數(shù)學(xué)家祖沖之在圓周率研究上的成就,某教師在講授概率內(nèi)容時要求學(xué)生從小數(shù)點后的6位數(shù)字1,4,1,5,9,2中隨機選取兩個數(shù)字做為小數(shù)點后的前兩位(整數(shù)部分3不變),那么得到的數(shù)字大于3.14的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com