【題目】如圖,四棱錐M-ABCD中,MB⊥平面ABCD,四邊形ABCD是矩形,AB=MB,E、F分別為MA、MC的中點(diǎn).

(1)求證:平面BEF⊥平面MAD;

(2)若,求三棱錐E-ABF的體積.

【答案】(1)見解析;(2)

【解析】

(1)先證明BE⊥平面MAD,再證平面BEF⊥平面MAD;(2)利用體積變換求三棱錐E-ABF的體積.

(1)因?yàn)镸B⊥平面ABCD,所以MB⊥AD,

又因?yàn)樗倪呅蜛BCD是矩形,所以AD⊥AB,

因?yàn)锳B∩MB=B,所以AD⊥平面MAB,

因?yàn)锽E平面MAB,所以AD⊥BE,

又因?yàn)锳B=MB,E為MA的中點(diǎn),

所以BE⊥MA,因?yàn)镸A∩AD=A,

所以BE⊥平面MAD,

又因?yàn)锽E平面BEF,

所以平面BEF⊥平面MAD.

(2)因?yàn)锳D∥BC,所以BC⊥面MAB,又因?yàn)镕為MC的中點(diǎn),

所以F到面MAB的距離,

又因?yàn)镸B⊥平面ABCD,AB=MB=,E為MA的中點(diǎn),

所以

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4 — 4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為).

1)分別寫出直線的普通方程與曲線的直角坐標(biāo)方程;

2)已知點(diǎn),直線與曲線相交于兩點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,AF⊥平面ABC,且.E為線段DC上一點(diǎn),沿直線AE將△ADE翻折成,M的中點(diǎn),則三棱錐體積的最小值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)小組從醫(yī)院和氣象局獲得20181月至6月份每月20的晝夜溫差,()和患感冒人數(shù)(/人)的數(shù)據(jù),畫出如圖的折線圖.

1)建立關(guān)于的回歸方程(精確到0.01),預(yù)測(cè)20191月至6月份晝夜溫差為時(shí)患感冒的人數(shù)(精確到整數(shù));

2)求的相關(guān)系數(shù),并說明的相關(guān)性的強(qiáng)弱(若,則認(rèn)為具有較強(qiáng)的相關(guān)性),

參考數(shù)據(jù):,,,

相關(guān)系數(shù):,回歸直線方程是,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2)當(dāng)時(shí),求方程的解;

(3)若,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),則的取值范圍是________.若其在區(qū)間上至少有一個(gè)零點(diǎn),則的最小值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,兩兩垂直,四邊形是邊長為2的正方形,ACDGEF,且.

1)證明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為貫徹落實(shí)黨中央全面建設(shè)小康社會(huì)的戰(zhàn)略部署,某貧困地區(qū)的廣大黨員干部深入農(nóng)村積極開展“精準(zhǔn)扶貧”工作.經(jīng)過多年的精心幫扶,截至2018年底,按照農(nóng)村家庭人均年純收入8000元的小康標(biāo)準(zhǔn),該地區(qū)僅剩部分家庭尚未實(shí)現(xiàn)小康.20197月,為估計(jì)該地能否在2020年全面實(shí)現(xiàn)小康,統(tǒng)計(jì)了該地當(dāng)時(shí)最貧困的一個(gè)家庭201916月的人均月純收入,作出散點(diǎn)圖如下:

根據(jù)相關(guān)性分析,發(fā)現(xiàn)其家庭人均月純收入與時(shí)間代碼之間具有較強(qiáng)的線性相關(guān)關(guān)系(記20191月、2月……分別為,,…,依此類推),由此估計(jì)該家庭2020年能實(shí)現(xiàn)小康生活.20201月突如其來的新冠肺炎疫情影響了奔小康的進(jìn)展,該家庭2020年第一季度每月的人均月純收入均只有201912月的預(yù)估值的.

1)求該家庭20203月份的人均月純收人;

2)如果以該家庭3月份人均月純收入為基數(shù),以后每月的增長率為,為使該家庭2020年能實(shí)現(xiàn)小康生活,至少應(yīng)為多少?(結(jié)果保留兩位小數(shù))

參考數(shù)據(jù):,,.

參考公式:線性回歸方程中,,;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AQ經(jīng)過定點(diǎn),且與定直線相切(其中a為常數(shù),且.記動(dòng)圓圓心Q的軌跡為曲線C.

1)求C的方程,并說明C是什么曲線?

2)設(shè)點(diǎn)P的坐標(biāo)為,過點(diǎn)P作曲線C的切線,切點(diǎn)為A,若過點(diǎn)P的直線m與曲線C交于MN兩點(diǎn),則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案