【題目】已知,函數(shù).若函數(shù)在區(qū)間上有兩個零點,則的取值范圍是________.若其在區(qū)間上至少有一個零點,則的最小值是________.

【答案】

【解析】

1)首先設,由已知條件求的范圍,再表示,求的范圍;(2)經(jīng)過整理,換元,方程變形為為關于的直線,那么,表示直線上的點到原點的距離的平方,那么距離的最小值就是原點到直線的距離,利用點到直線的距離求最小值.

1)設兩個零點為,

所以

,

,

由條件可知 ,

,

所以的范圍是.

2)由題意可知存在使

整理為:

,整理為關于的直線,

那么,表示直線上的點到原點的距離的平方,

那么距離的最小值就是原點到直線的距離

所以,當時,是單調(diào)遞增函數(shù),當是取得最小值.

的最小值是.

故答案為: ;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為常數(shù), ,函數(shù), (其中是自然對數(shù)的底數(shù)).

(1)過坐標原點作曲線的切線,設切點為,求證:

(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.

1)求證:平面.

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是橢圓的三個頂點,橢圓的離心率,點到直線的距離是.是橢圓上位于軸左邊上的任意一點,直線,分別交直線,兩點,以為直徑的圓記為.

1)求橢圓的方程;

2)求證:圓始終與圓相切,并求出所有圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐M-ABCD中,MB⊥平面ABCD,四邊形ABCD是矩形,AB=MB,E、F分別為MA、MC的中點.

(1)求證:平面BEF⊥平面MAD;

(2)若,求三棱錐E-ABF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質量指標值,由測量表得如下頻數(shù)分布表:

質量指標值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

II)估計這種產(chǎn)品質量指標值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質量指標值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F,且EF=.則下列結論中正確的個數(shù)為

①AC⊥BE;

②EF∥平面ABCD;

三棱錐A﹣BEF的體積為定值;

的面積與的面積相等,

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的準線與x軸的交點為H,點F為拋物線的焦點,點P在拋物線上且,當k最大時,點P恰好在以H,F為焦點的雙曲線上,則k的最大值為_____,此時該雙曲線的離心率為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列的前項和為,若存在正整數(shù),且,使得,同時成立,則稱數(shù)列數(shù)列”.

1)若首項為,公差為的等差數(shù)列數(shù)列,求的值;

2)已知數(shù)列為等比數(shù)列,公比為.

①若數(shù)列數(shù)列,求的值;

②若數(shù)列數(shù)列,,求證:為奇數(shù),為偶數(shù).

查看答案和解析>>

同步練習冊答案