【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進行檢驗.

(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考公式: ,

參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.

【答案】(1);(2)見解析

【解析】

試題分析:1)根據(jù)所給的數(shù)據(jù),求出x,y的平均數(shù),根據(jù)求線性回歸方程系數(shù)的方法,求出系數(shù)b,把bx,y的平均數(shù),代入求a的公式,做出a的值,寫出線性回歸方程.
2)根據(jù)所求的線性回歸方程,預報當自變量為106時的y的值,把預報的值同原來表中所給的106對應的值做差,差的絕對值不超過2,得到線性回歸方程理想.

試題解析:

(1)由數(shù)據(jù)求得

由公式求得

再由

所以關(guān)于的線性回歸方程為.

(2)當, , ;

同樣, , ,

所以,該小組所得線性回歸方程是理想的.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列關(guān)于簡單幾何體的說法中正確的是( )

①有兩個面互相平行,其余各面都是平行四邊形的多面體是棱柱;

②有一個面是多邊形,其余各面都是三角形的幾何體是棱錐;

③在斜二測畫法中,與坐標軸不平行的線段的長度在直觀圖中有可能保持不變;

④有兩個底面平行且相似其余各面都是梯形的多面體是棱臺;

⑤空間中到定點的距離等于定長的所有點的集合是球面.

A. ③④⑤ B. ③⑤ C. ④⑤ D. ①②⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓及直線,直線被圓截得的弦長為

)求實數(shù)的值.

)求過點并與圓相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定點M(1,0)和直線x=﹣1上的動點N(﹣1,t),線段MN的垂直平分線交直線y=t于點R,設(shè)點R的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線y=kx+b(k≠0)交x軸于點C,交曲線E于不同的兩點A,B,點B關(guān)于x軸的對稱點為點P.點C關(guān)于y軸的對稱點為Q,求證:A,P,Q三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列命題中:
①存在一個平面與正方體的12條棱所成的角都相等;
②存在一個平面與正方體的6個面所成較小的二面角都相等;
③存在一條直線與正方體的12條棱所成的角都相等;
④存在一條直線與正方體的6個面所成的角都相等.
其中真命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, , 平面, .設(shè)分別為的中點.

(1)求證:平面∥平面;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學藝術(shù)專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;

(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列,數(shù)學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經(jīng)測算該項目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:

,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將給予補貼.

1)當時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?

2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

同步練習冊答案