設(shè)函數(shù)f(x)=lnx-ax,g(x)=ex-ax,其中a為實數(shù).
(1)若f(x)在(2,+∞)上是單調(diào)減函數(shù),且g(x)在(2,+∞)上有最小值,求a的取值范圍;
(2)若g(x)在(0,+∞)上是單調(diào)增函數(shù),試求f(x)的零點個數(shù),并證明你的結(jié)論.
考點:導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求導(dǎo)數(shù),利用函數(shù)的單調(diào)性與g(x)在(2,+∞)上有最小值,即可求a的取值范圍;
(2)先確定a≤1,令f(x)=0,a=
lnx
x
,設(shè)h(x)=
lnx
x
,求導(dǎo)數(shù),分類討論,確定函數(shù)的單調(diào)性,結(jié)合函數(shù)的圖象,即可求f(x)的零點個數(shù).
解答: 解:(1)f(x)在(2,+∞)上是單調(diào)減函數(shù),
則當x∈(2,+∞),f′(x)=
1
x
-a≤0恒成立,a≥
1
x
恒成立,
a≥(
1
x
)max=
1
2

令g′(x)=ex-a=0,得x=ln a.
當x<ln a時,g′(x)<0;當x>ln a時,g′(x)>0.
又g(x)在(2,+∞)上有最小值,
所以ln a>2,即a>e2
綜上,有a∈(e2,+∞).
(2)當x∈(0,+∞),g′(x)=ex-a≥0恒成立,a≤(exmin,∴a≤1
令f(x)=0,a=
lnx
x
,設(shè)h(x)=
lnx
x
,h/(x)=
1-lnx
x2
(x>0)
,
令h′(x)=0,x=e
當x∈(0,e),h′(x)>0,h(x)在(0,e)上單調(diào)遞增
當x∈(e,+∞),h′(x)<0,h(x)在(e,+∞)上單調(diào)遞減,
h(x)的最大值為h(e)=
1
e

h(x)的大致圖象如圖所示:

1
e
<a≤1
時無零點,0<a<
1
e
時,兩個零點,a≤0,a=
1
e
時一個零點.
點評:本題考查導(dǎo)數(shù)知識的綜合運用,考查函數(shù)的單調(diào)性與最值,考查函數(shù)的零點,考查分類討論、數(shù)形結(jié)合的數(shù)學(xué)思想,正確運用導(dǎo)數(shù)是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

點P在邊長為1的正方形ABCD內(nèi)部運動,則點P到此正方形中心點的距離均不超過
1
2
的概率為(  )
A、
1
2
B、
1
4
C、
π
4
D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f ( x )=x2+ax(a∈R).
(1)若函數(shù)y=f (sinx+
3
cosx) (x∈R)的最大值為
16
3
,求f(x)的最小值;
(2)當a>2時,求證:f (sin2xlog2sin2x+cos2xlog2cos2x)≥1-a.其中x∈R,x≠kπ且x≠kπ+
π
2
(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

交通銀行向市場推出甲、乙兩種理財產(chǎn)品,若投資甲、乙兩種理財產(chǎn)品分別為p,q萬元,到期后獲得的收益分別為
1
10
p,
2
5
lnq萬元,且要求每種產(chǎn)品的投資起點都不低于1萬元.現(xiàn)在張老師把10萬元全部用于投資這兩種理財產(chǎn)品.
(Ⅰ)若張老師投資了乙種理財產(chǎn)品為8萬元,求到期后張老師獲得的總收益;
(Ⅱ)請你設(shè)計一個投資方案,使得到期后張老師獲得的總收益最大,并求出其最大總收益.(參考數(shù)據(jù):ln2≈0.7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點A(1,0),B為x軸負半軸上的動點,以AB為邊作菱形ABCD,使其兩對角線的交點H恰好落在y軸上.
(1)求動點D的軌跡E的方程;
(2)若四邊形MPNQ的四個頂點都在曲線E上,M、N關(guān)于x軸對稱,曲線E在點M處的切線為l,且PQ∥l.
①證明:直線PN與QN的斜率之和為定值;
②當點M的橫坐標為
3
4
,縱坐標大于0,∠PNQ=60°,求四邊形MPNQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2+bx(a>0),f′(1)=0.
(Ⅰ)試用含a的式子表示b,并求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在(
1
2
,+∞)上有兩個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-3sin2x-cos2x+3.
(1)當x∈[0,
π
2
]時,求f(x)的值域;
(2)若△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足
b
a
=
3
,
sin(2A+C)
sinA
=2+2cos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x-m
,若存在α∈(0,
π
2
),使f(sinα)+f(cosα)=0,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是不重合的兩條直線,α,β是不重合的兩個平面.下列命題:
①若α⊥β,m⊥α,則m∥β;       ②若m⊥α,m⊥β,則α∥β;
③若m∥α,m⊥n,則n⊥α;       ④若m∥α,m?β,則α∥β.
其中所有真命題的序號是
 

查看答案和解析>>

同步練習冊答案