【題目】如圖,拋物線C1:x2=4y,C2:x2=﹣2py(p>0),點(diǎn)M(x0 , y0)在拋物線C2上,過M作C1的切線,切點(diǎn)為A,B(M為原點(diǎn)O時(shí),A,B重合于O),當(dāng)x0=1﹣ 時(shí),切線MA的斜率為﹣

(1)求P的值;
(2)當(dāng)M在C2上運(yùn)動(dòng)時(shí),求線段AB中點(diǎn)N的軌跡方程(A,B重合于O時(shí),中點(diǎn)為O).

【答案】
(1)解:因?yàn)閽佄锞C1:x2=4y上任意一點(diǎn)(x,y)的切線斜率為y′= ,且切線MA的斜率為﹣

所以設(shè)A點(diǎn)坐標(biāo)為(x,y),得 ,解得x=﹣1,y= = ,點(diǎn)A的坐標(biāo)為(﹣1, ),

故切線MA的方程為y=﹣ (x+1)+

因?yàn)辄c(diǎn)M(1﹣ ,y0)在切線MA及拋物線C2上,于是

y0=﹣ (2﹣ )+ =﹣

∴y0=﹣ =﹣

解得p=2


(2)解:設(shè)N(x,y),A(x1, ),B(x2, ),x1≠x2,由N為線段AB中點(diǎn)知x= ③,y= =

切線MA,MB的方程為y= (x﹣x1)+ ,⑤;y= (x﹣x2)+ ⑥,

由⑤⑥得MA,MB的交點(diǎn)M(x0,y0)的坐標(biāo)滿足x0= ,y0=

因?yàn)辄c(diǎn)M(x0,y0)在C2上,即x02=﹣4y0,所以x1x2=﹣

由③④⑦得x2= y,x≠0

當(dāng)x1=x2時(shí),A,B丙點(diǎn)重合于原點(diǎn)O,A,B中點(diǎn)N為O,坐標(biāo)滿足x2= y

因此中點(diǎn)N的軌跡方程為x2= y


【解析】(1)利用導(dǎo)數(shù)的幾何意義,先表示出切線方程,再由M在拋物線上及在直線上兩個(gè)前提下,得到相應(yīng)的方程,解出p值.(2)由題意,可先設(shè)出A,B兩個(gè)端點(diǎn)的坐標(biāo)及中點(diǎn)的坐標(biāo),再由中點(diǎn)坐標(biāo)公式建立方程,直接求解出中點(diǎn)N的軌跡方程

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一(1)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

(1)求分?jǐn)?shù)在的頻數(shù)及全班人數(shù);

(2)求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線.設(shè)圓的半徑為1,圓心在上.

(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;

(2)若圓心上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天課外體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

平均每天鍛煉的時(shí)間/分鐘

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均課外體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.

(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

20

110

合計(jì)

(2)通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“課外體育達(dá)標(biāo)”性別有關(guān)?

參考公式,其中

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知四邊形BCDE為直角梯形,,,且ABE的中點(diǎn)沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個(gè)四棱錐

求證;

平面ABCD

求二面角的大小;

在棱PC上存在點(diǎn)M,滿足,使得直線AM與平面PBC所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,將其物理成績(jī)(均為整數(shù))分成六段,后畫出如下頻率分布直方圖.觀察圖形的信息,回答下列問題:

(1)估計(jì)這次考試的眾數(shù)與中位數(shù)(結(jié)果保留一位小數(shù));

(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如下程序框圖,如果輸出i=5,那么在空白矩形框中應(yīng)填入的語句為(

A.S=2*i﹣2
B.S=2*i﹣1
C.S=2*I
D.S=2*i+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問110名不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

經(jīng)計(jì)算的觀測(cè)值. 參照附表,得到的正確結(jié)論是

附表:

總計(jì)

愛好

40

20

60

不愛好

20

30

50

總計(jì)

60

50

110

0.050

0.010

0.001

3.841

6.635

10.828

A. 99%以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

B. 99%以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)

C. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

D. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知不等式 解集為,求不等式的解集。 (2)若不等式對(duì)任意均成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案