【題目】已知函數(shù)
(1)當(dāng)時(shí),證明:;
(2)若在上有且只有一個(gè)零點(diǎn),求的取值范圍.
【答案】(1)見解析; (2).
【解析】
(1) 將的值代入,再求出函數(shù)的最小值,即可證明;
(2)對進(jìn)行分類討論,當(dāng)可得函數(shù)有無數(shù)個(gè)零點(diǎn),求導(dǎo)數(shù),確定為負(fù)故符合題意,當(dāng)時(shí),求導(dǎo)函數(shù),對導(dǎo)數(shù)再求一次導(dǎo),再對進(jìn)行分類討論,同時(shí)利用奇偶性可得當(dāng)時(shí)在上有且只有一個(gè)零點(diǎn),當(dāng)時(shí),利用零點(diǎn)定理取一個(gè)特值,判斷出不合題意,得出的取值范圍.
(1)當(dāng)時(shí),,
所以的定義域?yàn)?/span>R,且故為偶函數(shù).
當(dāng)時(shí),,
記,所以.
因?yàn)?/span>,所以在上單調(diào)遞增,
即在上單調(diào)遞增,
故,
所以在上單調(diào)遞增,所以,
因?yàn)?/span>為偶函數(shù),所以當(dāng)時(shí),.
(2)①當(dāng)時(shí),,令,解得,
所以函數(shù)有無數(shù)個(gè)零點(diǎn),不符合題意;
②當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)等號成立,故符合題意;
③因?yàn)?/span>,所以是偶函數(shù),
又因?yàn)?/span>,故是的零點(diǎn).
當(dāng)時(shí),,記,則.
1)當(dāng)時(shí),,
故在單調(diào)遞增,故當(dāng)時(shí),即,
故在單調(diào)遞增,故
所以在沒有零點(diǎn).
因?yàn)?/span>是偶函數(shù),所以在上有且只有一個(gè)零點(diǎn).
2)當(dāng)時(shí),當(dāng)時(shí),存在,使得,且當(dāng)時(shí),單調(diào)遞減,故,
即時(shí),,故在單調(diào)遞減,,
又,所以,
由零點(diǎn)存在性定理知在上有零點(diǎn),又因?yàn)?/span>是的零點(diǎn),
故不符合題意;
綜上所述,a的取值范圍為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若橢圓的頂點(diǎn)和焦點(diǎn)中,存在不共線的三點(diǎn)恰為菱形的中心和頂點(diǎn),則的離心率等于( )
A.B.C.或D.或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)(、為實(shí)常數(shù)).
(1)當(dāng)時(shí),證明:不是奇函數(shù);
(2)設(shè)是奇函數(shù),求與的值;
(3)當(dāng)是奇函數(shù)時(shí),研究是否存在這樣的實(shí)數(shù)集的子集,對任何屬于的、,都有成立?若存在試找出所有這樣的;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系圓C的極坐標(biāo)方程為,直線的參數(shù)方程為(t為參數(shù)),直線和圓C交于A,B兩點(diǎn),P是圓C上不同于A,B的任意一點(diǎn).
(1)求圓C及直線的直角坐標(biāo)方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,且在上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若對任意,存在使,求實(shí)數(shù)的取值范圍;
(3)若存在實(shí)數(shù),使得當(dāng)時(shí),恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】眾所周知的“太極圖”,其形狀如對稱的陰陽兩魚互抱在一起,因而也被稱為“陰陽魚太極圖”.如圖是放在平面直角坐標(biāo)系中的“太極圖”,整個(gè)圖形是一個(gè)圓形,其中黑色陰影區(qū)域在y軸右側(cè)部分的邊界為一個(gè)半圓.給出以下命題:
①在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色陰影部分的概率是;
②當(dāng)時(shí),直線與黑色陰影部分有公共點(diǎn);
③黑色陰影部分中一點(diǎn),則的最大值為2.
其中所有正確結(jié)論的序號是( )
A.①B.②C.①③D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,是的中點(diǎn).
(1)求直三棱柱的全面積;
(2)求異面直線與所成角的大。ńY(jié)果用反三角函數(shù)表示);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合、均為實(shí)數(shù)集的子集,記:;
(1)已知,,試用列舉法表示;
(2)設(shè),當(dāng),且時(shí),曲線的焦距為,如果,,設(shè)中的所有元素之和為,對于滿足,且的任意正整數(shù)、、,不等式恒成立,求實(shí)數(shù)的最大值;
(3)若整數(shù)集合,則稱為“自生集”,若任意一個(gè)正整數(shù)均為整數(shù)集合的某個(gè)非空有限子集中所有元素的和,則稱為“的基底集”,問:是否存在一個(gè)整數(shù)集合既是自生集又是的基底集?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點(diǎn),過坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別交于,兩點(diǎn).
(1)證明:當(dāng)取得最小值時(shí),橢圓的離心率為.
(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com