(本小題滿分10分)
已知圓M過兩點C(1,-1)、D(-1,1)且圓心M在直線x+y-2=0上。
(1)、求圓M的方程
(2)、設P是直線3x+4y+8=0上的動點,PA、PB是圓M的兩條切線,A、B為切點,求四邊形PAMB的面積的最小值。
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L⊥直線AB。點P是圓O上異于A、B的任意一點,直線PA、PB分別交L與M、N點。
試建立適當?shù)闹苯亲鴺讼�,解決下列問題:
(1)若∠PAB=30°,求以MN為直徑的圓方程;
(2)當點P變化時,求證:以MN為直徑的圓必過圓O內(nèi)的一定點。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓,直線
.
(Ⅰ)若與
相切,求
的值;
(Ⅱ)是否存在值,使得
與
相交于
兩點,且
(其中
為坐標原點),若存在,求出
,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓的方程為
,過點
作直線與圓
交于
、
兩點。
(1)若坐標原點O到直線AB的距離為,求直線AB的方程;
(2)當△的面積最大時,求直線AB的斜率;
(3)如圖所示過點作兩條直線與圓O分別交于R、S,若
,且兩角均為正角,試問直線RS的斜率是否為定值,并說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程是
,曲線
的參數(shù)方程是
是參數(shù)).
(1)寫出曲線的直角坐標方程和曲線
的普通方程;
(2)求的取值范圍,使得
,
沒有公共點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分) 已知圓的圓心
在
軸上,半徑為1,直線
,被圓
所截的弦長為
,且圓心
在直線
的下方.
(I)求圓的方程;
(II)設,若圓
是
的內(nèi)切圓,求△
的面積
的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com