【題目】如圖,在四棱錐中,平面,,≌,,是線段的中點(diǎn).
(1)求證:∥平面;
(2)求二面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
試題分析:建立空間直角坐標(biāo)系,給出相應(yīng)點(diǎn)坐標(biāo),得平面PAB的法向量為,由,即可得∥平面
求出平面的一個(gè)法向量,平面的法向量,利用向量的夾角公式,即可求出二面角的余弦值;
解析:(1)證明:以B為坐標(biāo)原點(diǎn),BA所在的直線為x軸,BC所在的直線為y軸,過(guò)點(diǎn)B且與平面ABC垂直的直線為z軸,建立空間直角坐標(biāo)系如圖所示.
則B(0,0,0),C(0,,0),P(1,0,2),D,A(1,0,0),E,∴,,.
顯然平面PAB的法向量為,由,平面,∴∥平面.
(2)由(1)知,,,設(shè)平面的法向量為,則,取,則,∴為平面的一個(gè)法向量.同理:平面的法向量為
∴,故二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),滿足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求證: ;
(2)若{an}是等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn);
(1)若∠BFD=90°,△ABD的面積為 ,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用區(qū)間表示);
(2)求函數(shù)f(x)=2x3﹣3(1+a)x2+6ax在D內(nèi)的極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù).
1)sin213°+cos217°﹣sin13°cos17°
2)sin215°+cos215°﹣sin15°cos15°
3)sin218°+cos212°﹣sin18°cos12°
4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°
5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°
(Ⅰ)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
(Ⅱ)根據(jù)(Ⅰ)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),( ),圓C的參數(shù)方程 (θ為參數(shù)).
(Ⅰ)設(shè)P為線段MN的中點(diǎn),求直線OP的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三國(guó)魏人劉徽,自撰《海島算經(jīng)》,專論測(cè)高望遠(yuǎn).其中有一題:今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從後表卻行百二十七步,人目著地取望島峰,亦與表末參合。問(wèn)島高及去表各幾何?翻譯如下:要測(cè)量海島上一座山峰的高度,立兩根高三丈的標(biāo)桿和,前后兩竿相距步,使后標(biāo)桿桿腳與前標(biāo)桿桿腳與山峰腳在同一直線上,從前標(biāo)桿桿腳退行步到,人眼著地觀測(cè)到島峰,、、、三點(diǎn)共線,從后標(biāo)桿桿腳退行步到,人眼著地觀測(cè)到島峰,、、三點(diǎn)也共線,則山峰的高度__________步.(古制步尺,里丈尺步)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工藝品廠要設(shè)計(jì)一個(gè)如圖1所示的工藝品,現(xiàn)有某種型號(hào)的長(zhǎng)方形材料如圖2所示,其周長(zhǎng)為4m,這種材料沿其對(duì)角線折疊后就出現(xiàn)圖1的情況.如圖,ABCD(AB>AD)為長(zhǎng)方形的材料,沿AC折疊后AB'交DC于點(diǎn)P,設(shè)△ADP的面積為S2 , 折疊后重合部分△ACP的面積為S1 .
(Ⅰ)設(shè)AB=xm,用x表示圖中DP的長(zhǎng)度,并寫(xiě)出x的取值范圍;
(Ⅱ)求面積S2最大時(shí),應(yīng)怎樣設(shè)計(jì)材料的長(zhǎng)和寬?
(Ⅲ)求面積(S1+2S2)最大時(shí),應(yīng)怎樣設(shè)計(jì)材料的長(zhǎng)和寬?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+ |﹣|x﹣ |;
(1)作出函數(shù)f(x)的圖象;
(2)根據(jù)(1)所得圖象,填寫(xiě)下面的表格:
性質(zhì) | 定義域 | 值域 | 單調(diào)性 | 奇偶性 | 零點(diǎn) |
f(x) |
(3)關(guān)于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6個(gè)不同的實(shí)數(shù)解,求n的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com