【題目】設(shè)定義在D上的函數(shù)在點(diǎn)處的切線(xiàn)方程為,當(dāng)時(shí),若在D內(nèi)恒成立,則稱(chēng)P點(diǎn)為函數(shù)的“類(lèi)對(duì)稱(chēng)中心點(diǎn)”,則函數(shù)的“類(lèi)對(duì)稱(chēng)中心點(diǎn)”的坐標(biāo)是________.
【答案】
【解析】
由求導(dǎo)公式求出函數(shù)f(x)的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義和條件求出切線(xiàn)方程,再求出y=g(x),設(shè)F(x)=f(x)﹣g(x),求出導(dǎo)數(shù)化簡(jiǎn)后利用分類(lèi)討論和導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,判斷出F(x)的單調(diào)性和最值,從而可判斷出的符號(hào),再由“類(lèi)對(duì)稱(chēng)中心點(diǎn)”的定義確定“類(lèi)對(duì)稱(chēng)中心點(diǎn)”的坐標(biāo).
解:由題意得,f′(x),f(x0)(x>0),
即函數(shù)y=f(x)的定義域D=(0,+∞),
所以函數(shù)y=f(x)在點(diǎn)P(x0,f(x0))處的切線(xiàn)方程l方程為:
y﹣()=()(x﹣x0),
則g(x)=()(x﹣x0)+(),
設(shè)F(x)=f(x)﹣g(x)lnx﹣[()(x﹣x0)+()],
則F(x0)=0,
所以F′(x)=f′x)﹣g′(x)()
當(dāng)0<x0<e時(shí),F(x)在(x0,)上遞減,
∴x∈(x0,)時(shí),F(x)<F(x0)=0,此時(shí),
當(dāng)x0>e時(shí),F(x)在(,x0)上遞減;
∴x∈(,x0)時(shí),F(x)>F(x0)=0,此時(shí),
∴y=F(x)在(0,e)∪(e,+∞)上不存在“類(lèi)對(duì)稱(chēng)點(diǎn)”.
若x0=e,0,則F(x)在(0,+∞)上是增函數(shù),
當(dāng)x>x0時(shí),F(x)>F(x0)=0,當(dāng)x<x0時(shí),F(x)<F(x0)=0,
故,
即此時(shí)點(diǎn)P是y=f(x)的“類(lèi)對(duì)稱(chēng)點(diǎn)”,
綜上可得,y=F(x)存在“類(lèi)對(duì)稱(chēng)點(diǎn)”,e是一個(gè)“類(lèi)對(duì)稱(chēng)點(diǎn)”的橫坐標(biāo),
又f(e),所以函數(shù)f(x)的“類(lèi)對(duì)稱(chēng)中心點(diǎn)”的坐標(biāo)是,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知P,A,B,C是半徑為2的球面上的點(diǎn),PA=PB=PC=2,,點(diǎn)B在AC上的射影為D,則三棱錐體積的最大值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(a為常數(shù))與x軸有唯一的公共點(diǎn)A.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)曲線(xiàn)在點(diǎn)A處的切線(xiàn)斜率為,若存在不相等的正實(shí)數(shù),,滿(mǎn)足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】至年底,我國(guó)發(fā)明專(zhuān)利申請(qǐng)量已經(jīng)連續(xù)年位居世界首位,下表是我國(guó)年至年發(fā)明專(zhuān)利申請(qǐng)量以及相關(guān)數(shù)據(jù).
注:年份代碼~分別表示~.
(1)可以看出申請(qǐng)量每年都在增加,請(qǐng)問(wèn)這幾年中哪一年的增長(zhǎng)率達(dá)到最高,最高是多少?
(2)建立關(guān)于的回歸直線(xiàn)方程(精確到),并預(yù)測(cè)我國(guó)發(fā)明專(zhuān)利申請(qǐng)量突破萬(wàn)件的年份.
參考公式:回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面為矩形的四棱錐中,平面平面.
(1)證明:;
(2)若,,設(shè)為中點(diǎn),求直線(xiàn)與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD是正方形,PA⊥平面ABCD,E,F分別是線(xiàn)段AD,PB的中點(diǎn),PA=AB=1.
(1)證明:EF∥平面PDC;
(2)求點(diǎn)F到平面PDC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)集(,)具有性質(zhì):對(duì)任意的、(),與兩數(shù)中至少有一個(gè)屬于.
(1)分別判斷數(shù)集與是否具有性質(zhì),并說(shuō)明理由;
(2)證明:,且;
(3)證明:當(dāng)時(shí),、、、、成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在四棱錐S﹣AFCD中,平面SCD⊥平面AFCD,∠DAF=∠ADC=90°,AD=1,AF=2DC=4,,B,E分別為AF,SA的中點(diǎn).
(1)求證:平面BDE∥平面SCF
(2)求二面角A﹣SC﹣B的余弦值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com