【題目】已知拋物線Cy2=4x與橢圓E1ab0)有一個(gè)公共焦點(diǎn)F.設(shè)拋物線C與橢圓E在第一象限的交點(diǎn)為M.滿足|MF|.

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)過點(diǎn)P1,)的直線交拋物線CAB兩點(diǎn),直線PO交橢圓E于另一點(diǎn)Q.PAB的中點(diǎn),求△QAB的面積.

【答案】1;(2.

【解析】

1)由拋物線的定義可得,則M,),再由橢圓的定義可得,即可求得,進(jìn)而求解;

(2)設(shè)Ax1,y1),Bx2,y2),利用斜率公式可得,即可得到直線AB的方程,再由點(diǎn)到直線距離可得點(diǎn)到直線的距離,聯(lián)立拋物線和直線,進(jìn)而利用弦長(zhǎng)公式求得,則,即可求解.

1)由拋物線方程可得F1,0),則橢圓的另一個(gè)焦點(diǎn),

因?yàn)?/span>,∴M,),

2a4,則a=2,

所以,

所以橢圓E的標(biāo)準(zhǔn)方程為.

2)設(shè)Ax1,y1),Bx2,y2),點(diǎn)P1,)在橢圓上,則Q(﹣1,),

因?yàn)?/span>PAB的中點(diǎn),且,

kAB,

故直線AB的方程為yx1),即8x6y+1=0,

Q到直線AB的距離,

聯(lián)立,整理得64x2128x+1=0,

x1+x2=2,x1x2,

,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)上的增函數(shù)求的取值范圍;

2)若函數(shù)恰有兩個(gè)不等的極值點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn).

)證明: BC1//平面A1CD;

)設(shè)AA1= AC=CB=2,AB=2,求三棱錐CA1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自201911日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:

個(gè)人所得稅稅率表(調(diào)整前)

個(gè)人所得稅稅率表(調(diào)整后)

免征額3500

免征額5000

級(jí)數(shù)

全月應(yīng)納稅所得額

稅率(%)

級(jí)數(shù)

全月應(yīng)納稅所得額

稅率(%)

1

不超過1500元部分

3

1

不超過3000元部分

3

2

超過1500元至4500元的部分

10

2

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

3

超過12000元至25000元的部分

20

...

...

...

...

...

...

(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應(yīng)納的稅,試寫出調(diào)整前后關(guān)于的函數(shù)表達(dá)式;

(2)某稅務(wù)部門在小紅所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表

收入(元)

人數(shù)

30

40

10

8

7

5

先從收入在的人群中按分層抽樣抽取7人,再?gòu)闹羞x2人作為新納稅法知識(shí)宣講員,求兩個(gè)宣講員不全是同一收入人群的概率;

(3)小紅該月的工資、薪金等稅前收入為7500元時(shí),請(qǐng)你幫小紅算一下調(diào)整后小紅的實(shí)際收入比調(diào)整前增加了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,,,分別為線段,上的點(diǎn),且,.

(1)證明:;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,為矩形,為等腰梯形,,,,且,平面平面,分別為,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)若,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)表示k個(gè)數(shù)字均為1的十進(jìn)制數(shù)(=1,=111),定義

(1)對(duì)于任意正整數(shù)m、n,令寫出一個(gè)關(guān)于f(m,n)的遞推關(guān)系式,并證明之;

(2)證明:對(duì)于任意正整數(shù)m、n,{m+n}!均可以被{m}!.{n}!整除。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從廣安市某中學(xué)校的名男生中隨機(jī)抽取名測(cè)量身高,被測(cè)學(xué)生身高全部介于cmcm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組,第二組,...,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為人.

1)求第七組的頻率;

2)估計(jì)該校名男生的身高的中位數(shù)。

3)若從樣本中身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,求抽出的兩名男生是同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面平面,為等腰直角三角形,,四邊形為直角梯形,,,,

1)求證:平面

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案