【題目】已知函數(shù).
(1)求在上的最小值;
(2)若關(guān)于的不等式只有兩個整數(shù)解,求實數(shù)的取值范圍.
【答案】(1)當(dāng)時,最小值為;當(dāng),最小值為;(2).
【解析】試題分析:(1)運(yùn)用導(dǎo)數(shù)與單調(diào)性關(guān)系的有關(guān)知識求解;(2)借助題設(shè)條件運(yùn)用分類整合的數(shù)學(xué)思想分析求解即可獲解.
試題解析:
(1),令得的遞增區(qū)間為;
令得的遞減區(qū)間為,.2分 ∵,則
當(dāng)時, 在上為增函數(shù), 的最小值為;
當(dāng)時, 在上為增函數(shù),在上為減函數(shù),又,
∴若, 的最小值為,...4分若, 的最小值為,
綜上,當(dāng)時, 的最小值為;當(dāng), 的最小值為
(2)由(1)知, 的遞增區(qū)間為,遞減區(qū)間為,
且在上,又,則.又.
∴時,由不等式得或,而解集為,整數(shù)解有無數(shù)多個,不合題意;
時,由不等式得,解集為,
整數(shù)解有無數(shù)多個,不合題意;
時,由不等式得或,
∵解集為無整數(shù)解,
若不等式有兩整數(shù)解,則,
∴
綜上,實數(shù)的取值范圍是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中, 的中點為,且,點在的延長線上,且.固定邊,在平面內(nèi)移動頂點,使得圓與邊,邊的延長線相切,并始終與的延長線相切于點,記頂點的軌跡為曲線.以所在直線為軸, 為坐標(biāo)原點如圖所示建立平面直角坐標(biāo)系.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)動直線交曲線于兩點,且以為直徑的圓經(jīng)過點,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線: ,曲線: (為參數(shù)),以坐標(biāo)原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)求曲線, 的極坐標(biāo)方程;
(Ⅱ)曲線: (為參數(shù), , )分別交, 于, 兩點,當(dāng)取何值時, 取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B,C,D為平面內(nèi)的四點,且A(1,3),B(2,﹣2),C(4,1).
(1)若 = ,求D點的坐標(biāo);
(2)設(shè)向量 = , = ,若k ﹣ 與 +3 平行,求實數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,a2=3,a5=81. (Ⅰ)求an;
(Ⅱ)設(shè)bn=log3an , 求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.己知asinA+csinC﹣ asinC=bsinB, (Ⅰ)求B;
(Ⅱ)若A=75°,b=2,求a,c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且滿足an=2Sn﹣1(n∈N*) (Ⅰ)求證:數(shù)列{an}為等比數(shù)列;
(Ⅱ)若bn=(2n+1)an , 求{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌手機(jī)廠商推出新款的旗艦機(jī)型,并在某地區(qū)跟蹤調(diào)查得到這款手機(jī)上市時間(第x周)和市場占有率(y﹪)的幾組相關(guān)數(shù)據(jù)如下表:
1 | 2 | 3 | 4 | 5 | |
0.03 | 0.06 | 0.1 | 0.14 | 0.17 |
(Ⅰ)根據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)上述線性回歸方程,分析該款旗艦機(jī)型市場占有率的變化趨勢,并預(yù)測在第幾周,該款旗艦機(jī)型市場占有率將首次超過 0.40﹪(最后結(jié)果精確到整數(shù)).
參考公式:,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com