【題目】將函數(shù)f(x)=2cos2x的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
【答案】A
【解析】解:將函數(shù)f(x)=2cos2x的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象, 得g(x)=2cos2(x﹣ )=2cos(2x﹣ ),
由 ,得 .
當(dāng)k=0時(shí),函數(shù)的增區(qū)間為[ ],當(dāng)k=1時(shí),函數(shù)的增區(qū)間為[ ].
要使函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,
則 ,解得a∈[ , ].
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌新款夏裝即將上市,為了對新款夏裝進(jìn)行合理定價(jià),在該地區(qū)的三家連鎖店各進(jìn)行了兩天試銷售,得到如下數(shù)據(jù):
連鎖店 | 店 | 店 | 店 | |||
售價(jià)(元) | 80 | 86 | 82 | 88 | 84 | 90 |
銷量(件) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)分別以三家連鎖店的平均售價(jià)與平均銷量為散點(diǎn),求出售價(jià)與銷量的回歸直線方程;
(2)在大量投入市場后,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該夏裝成本價(jià)為40元/件,為使該新夏裝在銷售上獲得最大利潤,該款夏裝的單價(jià)應(yīng)定為多少元?(保留整數(shù))
附:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品要了解年廣告費(fèi)(單位:萬元)對年利潤(單位:萬元)的影響,對近4年的年廣告費(fèi)和年利潤數(shù)據(jù)作了初步整理,得到下面的表格:
廣告費(fèi) | 2 | 3 | 4 | 5 |
年利潤 | 26 | 39 | 49 | 54 |
(Ⅰ)用廣告費(fèi)作解釋變量,年利潤作預(yù)報(bào)變量,建立關(guān)于的回歸直線方程;
(Ⅱ)根據(jù)(Ⅰ)的結(jié)果預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)的年利潤.
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,解不等式;
(2)是否存在實(shí)數(shù),使不等式對一切實(shí)數(shù)恒成立?若存在,求出的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 對任意實(shí)數(shù)a≠0恒成立,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】省農(nóng)科站要檢測某品牌種子的發(fā)芽率,計(jì)劃采用隨機(jī)數(shù)表法從該品牌粒種子中抽取粒進(jìn)行檢測,現(xiàn)將這粒種子編號如下,,,,若從隨機(jī)數(shù)表第行第列的數(shù)開始向右讀,則所抽取的第粒種子的編號是 .(下表是隨機(jī)數(shù)表第行至第行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),若以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知圓的極坐標(biāo)方程為,設(shè)是圓上任一點(diǎn),連結(jié)并延長到,使.
(1)求點(diǎn)軌跡的直角坐標(biāo)方程;
(2)若直線與點(diǎn)軌跡相交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為平面內(nèi)不共線的三點(diǎn),表示的面積
(1)若求;
(2)若,,,證明:;
(3)若,,,其中,且坐標(biāo)原點(diǎn)恰好為的重心,判斷是否為定值,若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列的公比,前項(xiàng)和為,且滿足.,,分別是一個(gè)等差數(shù)列的第1項(xiàng),第2項(xiàng),第5項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和;
(3)若,的前項(xiàng)和為,且對任意的滿足,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com