【題目】已知橢圓C:9x2+y2=m2(m>0),直線l不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過(guò)點(diǎn)( ,m),延長(zhǎng)線段OM與C交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)l的斜率;若不能,說(shuō)明理由.

【答案】
(1)證明:設(shè)直線l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM),

將y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,

則判別式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,

則x1+x2= ,則xM= = ,yM=kxM+b=

于是直線OM的斜率kOM= = ,

即kOMk=﹣9,

∴直線OM的斜率與l的斜率的乘積為定值.


(2)解:四邊形OAPB能為平行四邊形.

∵直線l過(guò)點(diǎn)( ,m),

∴由判別式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,

即k2m2>9b2﹣9m2,

∵b=m﹣ m,

∴k2m2>9(m﹣ m)2﹣9m2,

即k2>k2﹣6k,

則k>0,

∴l(xiāng)不過(guò)原點(diǎn)且與C有兩個(gè)交點(diǎn)的充要條件是k>0,k≠3,

由(1)知OM的方程為y= x,

設(shè)P的橫坐標(biāo)為xP,

,即xP= ,

將點(diǎn)( ,m)的坐標(biāo)代入l的方程得b= ,

即l的方程為y=kx+

將y= x,代入y=kx+ ,

得kx+ = x

解得xM=

四邊形OAPB為平行四邊形當(dāng)且僅當(dāng)線段AB與線段OP互相平分,即xP=2xM,

于是 =2× ,

解得k1=4﹣ 或k2=4+

∵ki>0,ki≠3,i=1,2,

∴當(dāng)l的斜率為4﹣ 或4+ 時(shí),四邊形OAPB能為平行四邊形.


【解析】(1)聯(lián)立直線方程和橢圓方程,求出對(duì)應(yīng)的直線斜率即可得到結(jié)論.(2)四邊形OAPB為平行四邊形當(dāng)且僅當(dāng)線段AB與線段OP互相平分,即xP=2xM , 建立方程關(guān)系即可得到結(jié)論.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用直線的斜率,掌握一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫(xiě)字母k表示,也就是 k = tanα即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐的各個(gè)面中,最大的面積是( )

A.
B.1
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)α∈(0, ),滿足 sinα+cosα=
(1)求cos(α+ )的值;
(2)求cos(2α+ π)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在高校自主招生中,某學(xué)校獲得5個(gè)推薦名額,其中清華大學(xué)2名,北京大學(xué)2名,復(fù)旦大學(xué)1名.并且北京大學(xué)和清華大學(xué)都要求必須有男生參加.學(xué)校通過(guò)選拔定下3男2女共5個(gè)推薦對(duì)象,則不同的推薦方法共有(
A.20種
B.22種
C.24種
D.36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x),x∈R,對(duì)于任意的x,y∈R,f(x+y)=f(x)+f(y),若f(1)= ,則f(﹣2016)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)=x2﹣2ax+5.
(1)若a>1,且函數(shù)f(x)的定義域和值域均為[1,a],求實(shí)數(shù)a的值;
(2)若不等式x|f(x)﹣x2|≤1對(duì)x∈[ , ]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)在x= 處取得最大值,則函數(shù)y=f(x+ )是(
A.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn)( ,0)對(duì)稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn)( ,0)對(duì)稱
D.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E是矩形ABCD中AD邊上的點(diǎn),F(xiàn)是CD上的點(diǎn),AB=AE= AD=4,現(xiàn)將△ABE沿BE邊折至△PBE位置,并使平面PBE⊥平面BCDE,且平面PBE⊥平面PEF.

(1)求 的比值;
(2)求二面角E﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知指數(shù)函數(shù)y=g(x)滿足g(3)=8,又定義域?yàn)閷?shí)數(shù)集R的函數(shù)f(x)= 是奇函數(shù).
(1)討論函數(shù)y=f(x)的單調(diào)性;
(2)若對(duì)任意的t∈R,不等式f(2t﹣3t2)+f(t2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案