【題目】某三棱錐的三視圖如圖所示,則該三棱錐的各個面中,最大的面積是( )
A.
B.1
C.
D.
【答案】A
【解析】解:根據(jù)幾何體的三視圖,得;
該幾何體是如圖所示的直三棱錐,
且側棱PA⊥底面ABC,
PA=1,AC=2,點B到AC的距離為1;
∴底面△ABC的面積為S1= ×2×1=1,
側面△PAB的面積為S2= × ×1= ,
側面△PAC的面積為S3= ×2×1=1,
在側面△PBC中,BC= ,PB= = ,PC= = ,
∴△PBC是Rt△,
∴△PBC的面積為S4= × × = ;
∴三棱錐P﹣ABC的所有面中,面積最大的是△PBC,為 .
故選:A.
根據(jù)幾何體的三視圖,得出該幾何體是直三棱錐,根據(jù)圖中的數(shù)據(jù),求出該三棱錐的4個面的面積,得出面積最大的三角形的面積.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2﹣2x+4y﹣4=0,是否存在斜率為1的直線l,使l被圓C截得的弦長AB為直徑的圓過原點,若存在求出直線的方程l,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= (e為自然對數(shù)的底數(shù),e=2.71828…).
(1)證明:函數(shù)f(x)為奇函數(shù);
(2)判斷并證明函數(shù)f(x)的單調性,再根據(jù)結論確定f(m2﹣m+1)+f(﹣ )與0的大小關系;
(3)是否存在實數(shù)k,使得函數(shù)f(x)在定義域[a,b]上的值域為[kea , keb].若存在,求出實數(shù)k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(m,﹣1), =( )
(1)若m=﹣ ,求 與 的夾角θ;
(2)設 . ①求實數(shù)m的值;
②若存在非零實數(shù)k,t,使得[ +(t2﹣3) ]⊥(﹣k +t ),求 的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A=[﹣1,3],B=[m,m+6],m∈R.
(1)當m=2時,求A∩RB;
(2)若A∪B=B,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=sin(2x﹣ )的圖象先向左平移 個單位,再將圖象上各點的橫坐標變?yōu)樵瓉淼? 倍(縱坐標不變),那么所得圖象的解析式為y= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓A:(x+2)2+y2=1,圓B:(x﹣2)2+y2=49,動圓P與圓A,圓B均相切.
(1)求動圓圓心P的軌跡方程;
(2)已知點N(2, ),作射線AN,與“P點 軌跡”交于另一點M,求△MNB的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,經(jīng)過村莊A有兩條互相垂直的筆直公路AB和AC,根據(jù)規(guī)劃擬在兩條公路圍成的直角區(qū)域內建一工廠P,為了倉庫存儲和運輸方便,在兩條公路上分別建兩個倉庫M,N(異于村莊A,將工廠P及倉庫M,N近似看成點,且M,N分別在射線AB,AC上),要求MN=2,PN=1(單位:km),PN⊥MN.
(1)設∠AMN=θ,將工廠與村莊的距離PA表示為θ的函數(shù),記為l(θ),并寫出函數(shù)l(θ)的定義域;
(2)當θ為何值時,l(θ)有最大值?并求出該最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標軸,l與C有兩個交點A,B,線段AB的中點為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過點( ,m),延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率;若不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com