已知向量
m
=(cosα-
2
3
,-1),
n
=(sinα,1),
m
n
為共線向量,且α∈[-
π
2
,0]
(Ⅰ)求sinα+cosα;
(Ⅱ)求
cos(-
π
2
-α)cos(4π-α)sin(α-3π)
sin(α+
1
2
π)sin(-4π-α)
的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的求值,平面向量及應(yīng)用
分析:(Ⅰ)直接由向量共線的坐標(biāo)運(yùn)算列式求得sinα+cosα的值;
(Ⅱ)先由三角函數(shù)的誘導(dǎo)公式化簡(jiǎn),然后利用配角的方法求出sinα,則答案可求.
解答: 解:(Ⅰ)∵
m
=(cosα-
2
3
,-1),
n
=(sinα,1),且
m
n
為共線,
cosα-
2
3
+sinα=0
,即sinα+cosα=
2
3
;
(Ⅱ)
cos(-
π
2
-α)cos(4π-α)sin(α-3π)
sin(α+
1
2
π)sin(-4π-α)
=
-sinαcosα•(-sinα)
cosα•(-sinα)
=-sinα.
由(Ⅰ)知sinα+cosα=
2
3

sin(α+
π
4
)=
1
3
,
又α∈[-
π
2
,0],
α+
π
4
∈[-
π
4
,
π
4
]
,cos(α+
π
4
)=
2
2
3

∴sinα=sin[(α+
π
4
)-
π
4
]=sin(α+
π
4
)cos
π
4
-cos(α+
π
4
)sin
π
4

=
1
3
×
2
2
-
2
2
3
×
2
2
=
2
-4
6

cos(-
π
2
-α)cos(4π-α)sin(α-3π)
sin(α+
1
2
π)sin(-4π-α)
=-sinα=
4-
2
6
點(diǎn)評(píng):本題考查了向量共線的坐標(biāo)運(yùn)算,考查了三角函數(shù)的誘導(dǎo)公式,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)在區(qū)間[1,4]上遞增,則函數(shù)y=f(x+2)必在區(qū)間
 
上遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+x,則不等式f(
2
x
)>f(x-1)的解集是( 。
A、(-∞,-1]∪(0,2)
B、(-∞,-1)∪(0,2)
C、(-∞,-1]∪[0,2]
D、(-1,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足
x-4y+4≥0
2x-3y-2≤0
x≥0
y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為1,則log2
1
a
+
2
b
)的最小值為( 。
A、2
B、4
C、
1
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的上、下兩個(gè)頂點(diǎn)為A,B,直線l:y=-2,
點(diǎn)P是橢圓上異于點(diǎn)A、B的任意一點(diǎn),連接AP并延長(zhǎng)交直線l于點(diǎn)N,連接PB并延長(zhǎng)交直線l于點(diǎn)M,設(shè)AP所在的直線的斜率為k1,BP所在的直線的斜率為k2,若橢圓的離心率為
3
2
,且過(guò)點(diǎn)A(0,1).
(1)求k1•k2的值及線段MN的最小值;
(2)隨著點(diǎn)P的變化,以MN為直徑的圓是否恒過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn);如不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
3
+y2=1的一個(gè)焦點(diǎn)F1的直線與橢圓交于A、B兩點(diǎn),則A、B與橢圓的另一焦點(diǎn)F2構(gòu)成的△ABF2的周長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系下,圓 ρ=2cosθ 與圓 ρ=2的公切線條數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax+bsin3x+3且f(-3)=7,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(cosφ+x)5的展開(kāi)式中x3的系數(shù)為2,則sin(
2
-2φ)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案