【題目】將一顆質(zhì)地均勻的骰子先后拋擲2次,觀察其向上的點(diǎn)數(shù),分別記為

(1)若記“”為事件,求事件發(fā)生的概率;

(2)若記“”為事件,求事件發(fā)生的概率.

【答案】(1)(2)

【解析】

試題分析:(1)所有基本事件的種數(shù)為36,列舉可得到滿足的基本事件種數(shù),求其比值可得到概率值;(2)判斷的基本事件種數(shù),與所有基本事件種數(shù)求比值即可

試題解析:將骰子拋擲一次,它出現(xiàn)的點(diǎn)數(shù)有這六種結(jié)果.先后拋擲2次骰子,第一次骰子向上的點(diǎn)數(shù)有6種可能的結(jié)果,對于每一種,第二次又有6種可能出現(xiàn)的結(jié)果,于是基本事件一共有

(種).

(1)記為事件,則事件發(fā)生的基本事件有5個,所以所求的概率為

(2)記為事件,則事件發(fā)生的基本事件有6個,所以所求的概率為

答:事件發(fā)生的概率為,事件發(fā)生的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在育民中學(xué)舉行的電腦知識競賽中,將九年級兩個班參賽的學(xué)生成績得分均為整數(shù)進(jìn)行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.

1求第二小組的頻率,并補(bǔ)全這個頻率分布直方圖;

2求這兩個班參賽的學(xué)生人數(shù)是多少;

3這兩個班參賽學(xué)生的成績的中位數(shù)應(yīng)落在第幾小組內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,

(1)若曲線在點(diǎn)處的切線為,求的值;

(2)討論函數(shù)的單調(diào)性;

(3)設(shè)函數(shù),若至少存在一個,使得成立,求實(shí)數(shù)的取值范

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.

(1)若直線與曲線交于兩點(diǎn),求的值;

(2)求曲線的內(nèi)接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,圓

1)判斷直線與圓的位置關(guān)系,并證明你的結(jié)論;

2)直線過直線的定點(diǎn)且,若與圓交與兩點(diǎn),與圓交與 兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某城市有一塊半徑為40的半圓形(以為圓心,為直徑)綠化區(qū)域,現(xiàn)計劃對其進(jìn)行改建,在的延長線上取點(diǎn),使,在半圓上選定一點(diǎn),改建后的綠化區(qū)域由扇形區(qū)域和三角形區(qū)域組成,其面積為,設(shè).

(1)寫出關(guān)于的函數(shù)關(guān)系式,并指出的取值范圍;

(2)試問多大時,改建后的綠化區(qū)域面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),若不等式的解集為1,4,且方程fx=x有兩個相等的實(shí)數(shù)根。

1求fx的解析式;

2若不等式fx>mx在上恒成立,求實(shí)數(shù)m的取值范圍;

3解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,PD平面ABCD,PDQA,QA=AB=PD

I證明:平面PQC平面DCQ

II求二面角Q-BP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在扶貧活動中,為了盡快脫貧無債務(wù)致富,企業(yè)甲將經(jīng)營狀況良好的某種消費(fèi)品專賣店以5.8萬元的優(yōu)惠價格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)不計息.在甲提供的資料中:這種消費(fèi)品的進(jìn)價為每件14元;該店月銷量Q百件與銷售價格P的關(guān)系如圖所示;每月需各種開支2 000元.

1當(dāng)商品的價格為每件多少元時,月利潤扣除職工最低生活費(fèi)的余額最大?并求最大余額;

2企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

同步練習(xí)冊答案