選修4-2   矩陣與變換
T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M(2x,4y).圓C:x2+y2=1在變換T的作用下變成了什么圖形?
分析:利用T變換即可得出要求的圖形的方程,進而根據(jù)圓錐曲線的定義即可得出.
解答:解:設P(x,y)為圓C:x2+y2=1上的任意一點,在變換T的作用下變成了P(x,y),
則x=2x,y=4y,于是x=
1
2
x′
,y=
1
4
y′
,代入圓C的方程:x2+y2=1得
x′2
4
+
y′2
16
=1
,即為所求的方程,是焦點在y軸的橢圓.
點評:熟練掌握變換的方法和橢圓的定義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(選修4-2 矩陣與變換)
變換T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M'(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省漳州市四地七校高三第四次聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

(選修4—2   矩陣與變換)(本題滿分7分)

變換是將平面上每個點的橫坐標乘2,縱坐標乘4,變到點。

(Ⅰ)求變換的矩陣;

(Ⅱ)圓在變換的作用下變成了什么圖形?

 

查看答案和解析>>

科目:高中數(shù)學 來源:福建省09-10學年高二下學期期末數(shù)學理科考試試題 題型:解答題

(共2小題做答,每小題7分)

1.(選修4—2   矩陣與變換)(本題滿分7分)

變換是將平面上每個點的橫坐標乘2,縱坐標乘4,變到點。

(1)求變換的矩陣;

(2)圓在變換的作用下變成了什么圖形?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省廈門外國語學校高三(上)第四次段考數(shù)學試卷(理科)(解析版) 題型:解答題

(選修4-2 矩陣與變換)
變換T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M'(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?

查看答案和解析>>

同步練習冊答案