【題目】 如圖,要設(shè)計一張矩形廣告,該廣告含有大小相等的左右兩個矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2,四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最?

【答案】當(dāng)廣告的高為140 cm,寬為175 cm時,可使廣告的面積最小.

【解析】

設(shè)廣告的高為寬分別為x cm,y cm,則每欄的高和寬分別為x20,其中x20y25

兩欄面積之和為2(x20),由此得y=

廣告的面積S=xy=x()x

整理得S=

因為x200, 所以S≥2

當(dāng)且僅當(dāng)時等號成立,

此時有(x20)214400(x20),解得x=140,代入y=+25,得y175,

即當(dāng)x=140y175時,S取得最小值24500,

故當(dāng)廣告的高為140 cm,寬為175 cm時,可使廣告的面積最小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是正方形, 平面 // , , , 的中點

1)求證: ;

2)求證: //平面;

3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b,c分別是的三條邊,且.我們知道,如果為直角三角形,那么(勾股定理).反過來,如果,那么為直角三角形(勾股定理的逆定理).由此可知,為直角三角形的充要條件是.請利用邊長a,b,c分別給出為銳角三角形和鈍角三角形的一個充要條件,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,為了保護環(huán)境,實現(xiàn)城市綠化,某房地產(chǎn)公司要在拆遷地長方形ABCD處規(guī)劃一塊長方形地面HPGC,建造住宅小區(qū)公園,但不能越過文物保護區(qū)三角形AEF的邊線EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問如何設(shè)計才能使公園占地面積最大,求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點為.過作直線交橢圓,過作直線交橢圓,且垂直于點.

(Ⅰ)證明:點在橢圓內(nèi)部;

(Ⅱ)求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的個數(shù)是( )

①命題已知,,則的充分不必要條件;

②“函數(shù)的最小正周期為”是“”的必要不充分條件;

上恒成立上恒成立;

④“平面向量的夾角是鈍角”的充要條件是“

⑤命題函數(shù)的值域為,命題函數(shù)是減函數(shù).若為真命題,為假命題,則實數(shù)的取值范圍是.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=2sin2x+-2cosx--5a+2

1)設(shè)t=sinx+cosx,將函數(shù)fx)表示為關(guān)于t的函數(shù)gt),求gt)的解析式;

2)對任意x[0,],不等式fx)≥6-2a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的最大值為,則實數(shù)的取值范圍是()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20141月至201612月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論錯誤的是(

A.月接待游客量逐月增加

B.年接待游客量逐年增加

C.各年的月接待游客量高峰期大致在7,8

D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

同步練習(xí)冊答案