【題目】已知四棱錐S﹣ABCD中,底面ABCD是邊長為4的菱形,∠BAD=60°,SA=SD=2,點E是棱AD的中點,點F在棱SC上,且λ,SA//平面BEF.
(1)求實數(shù)λ的值;
(2)求三棱錐F﹣EBC的體積.
【答案】(1);(2).
【解析】
(1)連接AC,設(shè)AC∩BE=G,根據(jù)線面平行的性質(zhì)定理,結(jié)合平行線的性質(zhì),通過相似三角形的性質(zhì)進(jìn)行求解即可;
(2)根據(jù)菱形的性質(zhì)、勾股定理的逆定理、線面垂直的判定定理,結(jié)合三棱錐的體積公式,三角形的面積公式進(jìn)行求解即可.
(1)連接AC,設(shè)AC∩BE=G,則平面SAC∩平面EFB=FG,
∵SA∥平面EFB,∴SA∥FG,
∵△GEA∽△GBC,∴,
∴,
得SF,即;
(2)∵SA=SD=2,∴SE⊥AD,SE=4.
又∵AB=AD=4,∠BAD=60°,∴BE=2.
∴SE2+BE2=SB2,則SE⊥BE.,平面ABCD,
∴SE⊥平面ABCD,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右頂點分別為右焦點為,直線是橢圓在點處的切線.設(shè)點是橢圓上異于的動點,直線與直線的交點為,且當(dāng)時, 是等腰三角形.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)橢圓的長軸長等于,當(dāng)點運(yùn)動時,試判斷以為直徑的圓與直線的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)的部分圖象,M,N是它與x軸的兩個不同交點,D是M,N之間的最高點且橫坐標(biāo)為,點是線段DM的中點.
(1)求函數(shù)的解析式及上的單調(diào)增區(qū)間;
(2)若時,函數(shù)的最小值為,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過長期觀察得到:在交通繁忙的時段內(nèi),某公路汽車的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間的函數(shù)關(guān)系為
(1)在該時段內(nèi),當(dāng)汽車的平均速度為多少時,車流量最大,最大車流量為多少?(精確到0.1千輛/小時)
(2)若要求在該時段內(nèi)車流量超過10千輛/小時,則汽車的平均速度應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次考試后,對全班同學(xué)的數(shù)學(xué)成績進(jìn)行整理,得到表:
分?jǐn)?shù)段 | ||||
人數(shù) | 5 | 15 | 20 | 10 |
將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計出本次考試成績的中位數(shù)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】ABC的三個角A,B,C所對的邊分別是a,b,c,向量=(2,-1),=(sinBsinC,+2cosBcosC),且⊥.
(1)求角A的大小;
(2)現(xiàn)給出以下三個條件:①B=45;②2sinC-(+1)sinB=0;③a=2.試從中再選擇兩個條件以確定ABC,并求出所確定的ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)若時,關(guān)于的不等式恒成立,求實數(shù)的取值范圍;
(Ⅲ)若數(shù)列滿足, ,記的前項和為,求證: .
【答案】(I);(II);(III)證明見解析.
【解析】試題分析:(Ⅰ)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)當(dāng)時,因為,所以顯然不成立,先證明因此時, 在上恒成立,再證明當(dāng)時不滿足題意,從而可得結(jié)果;(III)先求出等差數(shù)列的前項和為,結(jié)合(II)可得,各式相加即可得結(jié)論.
試題解析:(Ⅰ)由,得.所以
令,解得或(舍去),所以函數(shù)的單調(diào)遞減區(qū)間為 .
(Ⅱ)由得,
當(dāng)時,因為,所以顯然不成立,因此.
令,則,令,得.
當(dāng)時, , ,∴,所以,即有.
因此時, 在上恒成立.
②當(dāng)時, , 在上為減函數(shù),在上為增函數(shù),
∴,不滿足題意.
綜上,不等式在上恒成立時,實數(shù)的取值范圍是.
(III)證明:由知數(shù)列是的等差數(shù)列,所以
所以
由(Ⅱ)得, 在上恒成立.
所以. 將以上各式左右兩邊分別相加,得
.因為
所以
所以.
【題型】解答題
【結(jié)束】
22
【題目】已知直線, (為參數(shù), 為傾斜角).以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的直角坐標(biāo)方程為.
(Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;
(Ⅱ)設(shè)點的直角坐標(biāo)為,直線與曲線的交點為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標(biāo)方程;
(2)若曲線截直線所得線段的中點坐標(biāo)為,求的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com