【題目】某醫(yī)藥研究所開發(fā)一種新藥,在試驗(yàn)藥效時(shí)發(fā)現(xiàn):如果成人按規(guī)定劑量服用那么服藥后每毫升血液中的含藥量y(微克)與時(shí)間x(小時(shí))之間滿足y=其對應(yīng)曲線(如圖所示)過點(diǎn).

(1)試求藥量峰值(y的最大值)與達(dá)峰時(shí)間(y取最大值時(shí)對應(yīng)的x值);

(2)如果每毫升血液中含藥量不少于1微克時(shí)治療疾病有效,那么成人按規(guī)定劑量服用該藥后一次能維持多長的有效時(shí)間(精確到0.01小時(shí))?

【答案】(1)y取最大值時(shí),對應(yīng)的x值為1.(2)3.85小時(shí)

【解析】(1)由曲線過點(diǎn),可得故a=8.

當(dāng)0<x<1時(shí),y=4,

當(dāng)x≥1時(shí)設(shè)2x-1=t,可知t≥1

y=4(當(dāng)且僅當(dāng)t=1,即x=1時(shí)等號成立).

綜上可知ymax=4,且當(dāng)y取最大值時(shí),對應(yīng)的x值為1.

所以藥量峰值為4微克,達(dá)峰時(shí)間為1小時(shí).

(2)當(dāng)0<x<1時(shí),=1可得x2-8x+1=0,

解得x=4±,又4+>1,故x=4-.

當(dāng)x≥1時(shí),設(shè)2x-1=t,則t≥1,=1,可得=1,解得t=4±

又t≥1,故t=4+所以2x-1=4+,可得x=log2(4+)+1.

由圖像知當(dāng)y≥1時(shí),對應(yīng)的x的取值范圍是[4-,log2(4+)+1],

log2(4+)+1-(4-)≈3.85,

所以成人按規(guī)定劑量服用該藥后一次能維持大約3.85小時(shí)的有效時(shí)間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式-kx+1≤0的解集非空,則k的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出與銷售額(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):

(1)求回歸直線方程;

(2)試預(yù)測廣告費(fèi)支出為萬元時(shí),銷售額多大?

(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測值與實(shí)際值之差的絕對值不超過的概率.(參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足

|x-3|≤1 .

(1)若為真,求實(shí)數(shù)的取值范圍;

(2)若的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到生產(chǎn)3000臺某產(chǎn)品的A,B,C三種部件的訂單,每臺產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個(gè)工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為k(k為正整數(shù)).

(1)設(shè)生產(chǎn)A部件的人數(shù)為x,分別寫出完成A,B,C三種部件生產(chǎn)需要的時(shí)間;

(2)假設(shè)這三種部件的生產(chǎn)同時(shí)開工,試確定正整數(shù)k的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的最小正周期

(2)設(shè),若上的值域?yàn)?/span>,求實(shí)數(shù)的值;

(3)若對任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一鮮花店一個(gè)月(30天)某種鮮花的日銷售量與銷售天數(shù)統(tǒng)計(jì)如下:

日銷售量(枝)

0~49

50~99

100~149

150~199

200~250

銷售天數(shù)(天)

3天

3天

15天

6天

3天

將日銷售量落入各組區(qū)間的頻率視為概率.

(1)試求這30天中日銷售量低于100枝的概率;

(2)若此花店在日銷售量低于100枝的6天中選擇2天作促銷活動,求這2天的日銷售量都低于50枝的概率(不需要枚舉基本事件).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①分類變量的隨機(jī)變量越大,說明“有關(guān)系”的可信度越大.

②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和0.3.

③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為中, ,

.正確的個(gè)數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)當(dāng)a=3時(shí),求A∩B;

(2)若a>0,且A∩B=,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案